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THEGRAVITATIONALFIELD ENVIRONMENTOFANEARTHSATELLITE

By David Adamson
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This report surveys what is currently known about the shape of the

earth and the gravitational fields of the earth, the sun, and the moon.

The various techniques used to obtain these data are described. A brief

survey of the relativistic effects on orbits has also been included.

INTRODUCTION

An earth satellite is subject not only to the earth's gravitational

pull but is measurably perturbed by the gravitational influence of the

moon and the sun. In this report, which is concerned with the gravita-

tional environment of an earth satellite, it has been necessary, there-

fore, in addition to discussing the terrestrial gravitational field, to

review the entire system of astronomical constants. Moreover, precision

determination of orbits and trajectories not only involves knowledge of

the gravitational field but also requires knowledge of the shape and

dimensions of the earth with high precision so that the relative positions

of the tracking stations can be precisely fixed. For this reason the

discussion has been extended to embrace the "figure" of the earth.

This report is not simply a recital of values but is an attempt to

provide some insight into the various techniques which are used in the

determination of these values. As a result of the inevitable delays

between preparation of a report of this nature and its final publication,

and the bewildering rate of technological advancement, certain of the

values quoted herein are already superseded. A case in point is provided

by the astronomical unit. Within the last several months, more accurate

determinations of the solar parallax have been made by bouncing radar

signals off Venus. No point would be served by incorporating this new

material, for doubtless even more accurate determinations will be made

in the months to come.

The contents of this report fall into the following four main

subdivisions:

(a) Shape and gravitational field of the earth using geodetic and

gravimetric data,



(b) Utilization of earth satellites for providing data pertaining
to the higher harmonics of the earth's gravitational field,

(c) The system of astronomical constants, and

(d) Relativistic effects on orbits.

The last subdivision was included on the grounds that precision of
astronomical measurementis such that relativistic effects are beginning
to assumesignificance.

Finally, an appendix has been added in an attempt to introduce the
terminology and concepts of spherical harmonic analysis, which is so
extensively used in discussing the earth's gravitational field. A
bibliography is also included.

SYMBOLS
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Ae,Ai,A_,... amplitudes of sinusoidal variation of orbital parameters

of earth satellite

moment of inertia of earth about its polar axis

coefficients of zerothj second, third,

harmonics of the earth's potential field
C0,0,C2,0,C3, O, •..

D

E

F

FX, Fy, Fz

G

H

I

IX, Iy, Iz

zonal

coefficient of fourth zonal harmonic as it appears in usual

expression for earth's potential (eq. (15))

total energy (potential plus kinetic)

force

force components

universal gravitational constant

coefficient of third zonal harmonic as it appears in usual

expression for earth's potential (eq. (43))

moment of inertia

moments of inertia about principal axes OX, Oy, OZ;

OX, longitudinal axis; Oy, transverse axis; and OZ,

polar axis



J

K

L

M

N

P

Pe

P_

p2(0), p3(0)

q

R

SI, S2, S3, •..

T

U

V

W

a

b

C

d

e

coefficient of second zonal harmonic as it appears in usual

expression for earth's potential (eq. (l_))

parameter appearing in second-order approximation to the

earth's potential surface

lunar inequality in the sun's longitude

mean anomaly

distance between earth's geoid and the approximating spheroid

period of orbital motion

sidereal period associated with motion of earth-moon system

about sun

sidereal period associated with motion of moon about earth

,p4(0),... second, third, fourth, zonal harmonics

applied moment

orbital radius of the earth

surface harmonics of the first, second, third, .

kinetic energy

potential energy

deviation potential, W - U

potential associated with earth's actual gravity field

semimajor axis of orbit

semlminor axis of orbit

velocity of light

distance between bodies

eccentricity

acceleration due to gravity

• degree
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h

i

ks

m

n

P

r

t

U

x, y, z

gp - gq

gq

E I

_a

height above mean sea level

orbital inclination

heliocentric gravitational constant (expressed in astronomical

units)

distance between earth and moon

mass

mean angular speed of orbital motion

semilatus rectum or pressure

radius vector from earth's center

mean radius of the moon

time

angular position of satellite relative to its ascending node,

+ 8

Cartesian coordinates

ellipticity of earth spheroid

ellipticity of earth's equatorial cross section

parameter appearing in the second-order spheroidal approxi-

mation to geold

angular displacement from perigee

a2rq 3
rotational parameter,

ame
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°22
modified rotational parameter,

longitude
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D

X
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Subscripts:

b

e

g

m

P

q

5

parameter appearing in the second-order spheroidal approxi-

mation to geoid

ratio m_/m e

mean equatorial horizontal parallax

density

rotational speed of earth

geographic latitude

geocentric latitude

colatitude

earth's geopotentlal (superposltion of potential and
centrifugal force fields)

angle between ascending node and perigee

solar parallax in seconds of arc

longitude of the ascending node

orbiting body

earth

due to gravity alone

moon

mean value

value at pole

value at equator
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CERTAIN BASIC CONCEPTS OF GEODESY

Basic Geodetic Problems

There are two principal problems confronting the theoretical geod-

esist: determination of the geometrical form of the earth's surface

and determination of the earth's gravitational field. It has been said

that the earth is rounder and smoother than the average bowling ball;

be this as it may, the surface is extremely irregular, consisting as it

does of mountain ranges, valleys, ravines, and so forth. When the fine

structure of the gravity distribution is viewed, it is also found to be

highly irregular. An exact solution to these two basic geodetic problems

is beyond the capabilities of practical mathematical analysis. The best

that can be done with mathematical analysis is to describe the large-

scale undulations of the earth's surface and the large-scale variations

of surface gravity.

These factors being considered, it is necessary to define a surface

of reference meeting the following two requirements:

(a) That it nowhere departs markedly from the topographical surface.

(b) That it be an equipotentlal surface to facilitate the analysis

of the gravitational field.

A surface meeting these two requirements which immediately comes to mind

is the mean sea-level surface, the so-called "geoid." In addition to

meeting these specific requirements, in common with all surfaces of ref-

erences, it is imperative that it be capable of explicit definition and

precise experimental determination. With regard to the definition of

mean sea level, some care must be exercised since it is influenced by

prevalent trade winds, salt content of water, local temperature, and

local barametrlc pressure; due allowances must be made for these effects.

Across continental masses, mean sea level is defined by the conceptual

device illustrated in sketch i.

L

1

9 _
7
9

Sketch i
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The open ended pipes must be assumed to be infinitesimally small to

ensure that the change in mass distribution is entirely negligible.

When its precise experimental determination is considered, a formi-

dable difficulty is encountered, The current technique of spirit leveling

does not, as is popularly supposed, give the true height above the mean

sea level, that is, above the geoid.

Geold (greatly exaggerated) T -B

Sketch 2

By starting from a water bench mark and proceeding by highways and

railroads, the height differentials between successive points spaced

100 meters or so apart are obtained by the following procedure. Two

rods are mounted vertically as at A and B. (See sketch 2.) A telescope

is mounted midway between them and exactly level. The difference of

reading on rod A and rod B defines the height differential dh between

A and B. This is not in all strictness, however, the same as the dif-

ference between Aa and Bb, since the telescope lies in the equipotential

surface passing through the point T and is not exactly parallel to the

portion of the geoidal surface lying directly beneath it. Indeed, the

technique of spirit leveling as Just described does not even ascribe a

unique height Jldh to any point on the surface,
the height obtained

being dependent upon the route taken between the water's edge and the

point in question. This condition results directly from the lack of

parallelism between successive equipotential surfaces. The following

sketch (sketch 3) and example illustrate this effect and serves to indi-

cate the order of inaccuracy in height estimation.
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Sketch 3

C 1 and C2 are two equipotential surfaces, C 1 corresponding to mean sea

level. Suppose, by using the technique of spirit leveling, the route AabB

is traversed and, then a height difference of hA - h B between points A

and B is assigned in spite of the fact that both points are at sea level.

If the mean gravity between A and a is denoted by gmA , and the mean

gravity between B and b, by gmB, then

gmAhA: gmBhB

L
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9

gmA(hA - hB)= (graB- gmA)hB
(2)

that is,

hA - hB -- _- h (3)

However, _g is of order eg where

hence

e

1
is the earth's ellipticity

297

hA - hB is of the order of magnitude eh (4)

By taking for h a height of i kilometer, which is a representative

height of a continental land mass, the discrepancy in h is of the order

of 3 meters.

Mathematically this ambiguity in h is expressed in the statement

that dh is not a perfect differential. On the other hand, g dh is
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a perfect differential, that is, ./ g dh taken from sea level to some

point P is entirely independent of the route taken in evaluating the

integral in question. Indeed, the integral in question defines the poten-

tial of P referred to mean sea level as datum. Thus in principle it

is possible to determine a unique value of _ - C for each point on the

earth's surface (4 is the value of the potential at point P, and C is

the value of the potential corresponding to mean sea level). Such being

the case, a number of unambiguous definitions of height can be formulated,

all of which agree to first order with the more crude concept of height.

Thus, _ - C defines the dynamic height where g45 is the value assigned
g45

to gravity at latitude 45 ° by the international gravity formula and

- C
defines the orthometric height where gl is the value assigned

gl

to gravity at latitude of the observation station on the basis of the
- C

same formula, or the height could be defined simply as g where g

is the measured gravity at the station without any appeal to the inter-

national gravity formula.

The datum surfaces associated with the heights as Just defined are

referred to as cogeoids. They differ from one another and from the geoid

itself by at most a couple or so meters. These cogeoids involving as

they do the implicit assumption of the constancy of gravity between a

cogeoid and a measuring station are in thls regard more compatible with

the technique of measuring height by using spirit leveling than is the

geoid itself, since the practical determination of height also involves

assumption of constancy of gravity or rather constancy of direction of

the gravity vector.

An argument which is sometimes advanced against the acceptance of

one or other of the cogeoids is that they are not strictly equipotential

surfaces whereas the geoid is. This criticism is shown to be lacking

in logical foundation when gravity reduction is considered.

Techniques of Reduction

Having introduced the concept of surface of reference, the question

now arises as to the method whereby measured values of gravity can be

reduced to the surface of reference. Various techniques of reduction

exist: (a) free-air reduction, (b) Bouguer reduction, and (c) various

isostatic reductions and each technique will be considered in turn.
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Sketch 4

Free-air reduction.- In the technique of free-air reduction cor-

rection is made only for the difference in distance to the center of the

earth without any regard for intervening matter. Thus, by denoting the
distance PO by h (see sketch 4)3

C_ e

gp = (_ + h)2 (5)

G% (6)

=o: : += (7)

where gp is measured gravity and go is the value of gravity ascribed

to point O.

The value ascribed to gravity at point 0 is to all intents and pur-

poses the value of gravity which would be measured at 0 if the over-

lying mass were compressed onto a surface distribution.

This redistribution of mass implicit in the free-air reduction will

result in slight adjustment of the order of a couple of meters to the

potential surface. In other words, even though the geoid defines an

equipotential surface with the mass where it is and as it is, on applying

free'air reduction to gravity it deviates from an equipotential surface

by the above amount but this deviation is precisely the order of devia-

tion of the cogeoid from the geoid; hence, the argument favoring adoption
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of the geoid rather than the cogeoid as a surface of reference3 on the

grounds that it is truly an equipotential surface, loses its force.

Bouguer reduction.- In this instance, the adjustment of gravity

from measuring station P to corresponding point 0 on reference surface

takes into account not only the variation in distance from the earth's

center but also the presence of the intervening mass. In this case, the

reduced gravity is to a first order the gravity which would be measured

at point 0 if the overlying material were entirely removed. Such a mass

redistribution must give rise to a significantly larger perturbation of

the equipotential surface than that associated with the free-alr reduction.

!sostatic reductions.- Here there is an effective transference of

mass to the level of isostatic compensation (lO0 kilometers). This pro-

cedure too gives rise to a greater perturbation to the equipotential
surface than does the free-air reduction.

Isostatlc reduction has been advocated by some as leading to a

smoother and hence statistically more manageable distribution of reduced

gravity over the reference surface than does free-air reduction. The

extent to which it achieves this purpose is a matter of some contention.

(See section on "Astronomical Measurements.") If, as some argue, iso-

static compensation only holds to a first order, itis highly debatable

whether the advantages compensate for the additional complexity intro-

duced into the analysis (larger distortion of equipotential surface among

other things).

It may be wondered why one is quibbling over choice of reference

surface when they differ by no more than a couple or so meters. There

are two reasons:

(a) It is essential that the basic concepts underlying any physical

science be subject to precise definition.

(b) With the development of more sophisticated measuring techniques

the experimental inaccuracies may fall below the level of the differences

now being discussed in which case they will become significant factors.

Throughout the remainder of this section, the distinctions discussed

above will be abandoned and the surface of reference will be referred to

as the geoid. The assumption is also made that those topographical fea-

tures have been compressed into the surface which is tantamount to

adopting free-alr reduction in preference to isostatic reduction. Fur-

thermore the deviation from equipotential resulting from this redistribu-

tion of mass will be disregarded.
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The Regular Part of the Earth's Field

If the extraneous topographic masses were compressed into the geoi-

dal surface (for practical purposes regarded as the mean sea-level sur-

face), although the earth's contours would then be smooth, it would still

not be a perfect sphere. By far, the major deviation from true sphericity

is the result of the earth's rotation on its axis. It is logical, there-

fore, to analyze this dominant deviation first of all, and it is this

problem that will be discussed in this section. In a subsequent section

the higher order deviations from sphericity will be treated.

At the outset, consider the form assumed by a rotating mass when

hydrostatic equilibrium is assumed to prevail, that is, the resultant

of the gravitational and centrifugal forces are wholly balanced by hydro-

static pressure forces. The question may well be posed on what grounds

the assumption of hydrostatic equilibrium can be Justified. There are,

of course, differences of opinion as to the extent to which hydrostatic

equilibrium prevails in the case of the earth. It is an accepted fact

that extraneous masses such as mountain ranges are to some extent com-

pensated for by mass deficiencies in the crustal layers underlying the

bases of such features - this is the concept of isostatic compensation.

If such stress alleviation occurs in the crustal layers, it is perhaps

to be expected that in the deep interior where temperatures are higher,

stress alleviation will be even more complete. It is on this basis that

the concept of hydrostatic equilibrium is provisionally accepted and

with this provision the internal field of the earth is examined.

Equilibrium form of a rotating mass.- If the mass is homogeneous,

the problem is amenable to fairly straightforward mathematical solution.

Thus, it is readily shown that at low rotational speeds, such as that

of the earth, a possible equilibrium form is one in which the surface

assumes the form of an ellipsoid of rotation of small ellipticity - the

so-called Maclaurin ellipsoids. Moreover, it can be shown that these

ellipsoids are stable with respect to small disturbances. It is hardly

to be expected, however, that the earth is homogeneous. Indeed, seis-

mological observations show the density at the center to exceed by a

factor of about 3 the density of the crustal layer. This lack of homo-

geneity greatly complicates the mathematical problem.

Under the assumption of hydrostatic equilibrium the Navier-Stokes

equations assume the simple form

1
vp -- (8)

L

1

9
7
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that is, the gradient of pressure is proportional to the gradient of

geopotentlal. The geopotential field is the result of superposltion of

the gravitational and centrifugal force fields. This relationship

clearly implies that equipotential surfaces are coincident with surfaces

of constant pressure and hence surfaces of constant density. There is

the additional implication here that, if equilibrium prevails, surfaces

of constant pressure are also surfaces of constant temperature.

A first-order analysis assumlnghydrostatic equilibrium I reveals

that the equipotential surfaces, that is, layers of constant density,

are ellipsoids of rotation:

r = rq(l - e sin2_ ') (9)

where r is the equatorial radius of the layer and c its ellipticity

in question. As the center is approached, the ellipticity falls to zero,

that is, in the immediate proximity of the center, the equipotential

surfaces are to all intents and purposes spherical in form.

Furthermore, the following relationship is established

3 C
= i - _=-%/- _ 1 (i0)

2 merq2 _V2 c

where

C polar moment of inertia

me mass of earth

rq

£

equatorial radius of surface layer

ellipticity of surface layer

O2rq3
rotational parameter, Gm---_

1With regard to the question of stability, it seems intuitively

obvious that, for the low rotational speeds under consideration, the

stable configuration is the one in which the most dense materials have

gravitated to the center.
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It is of interest to note in passing that from this relation the

dependence of ellipticity on rotational speed can be readily established

in the case of a h°m°gene°us b°dy (m_q2\_=_=5)'/ Substituting into

equation (lO)

32 2_5_ 1

1 1

2
2 _

Therefore

_2rq3

4 4 Gme

Equation (lO) is entirely independent of radial distribution of density.

Clearly then, a radial redistribution of density induces changes in both

C
c (_ to a first order is not subject to change since o2and

merq2

is fixed) which mutually cancel one another in equation (i0). Although

this may at first sight occasion some surprise, it becomes somewhat less

surprising when it is remembered that the imposition of the weak condi-

tion that the surface of an ellipsoid of revolution is to be an equipo-

tential surface imposes certain requirements on the mass distribution

in its interior. Specifically,

L
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9

3C-A i
----C - _ K

2 merq2

Viewed in this light, it is hardly surprising that the stronger condi-

tion of hydrostatic equilibrium leads directly to the relation (lO).

These first-order results were first obtained by Clairaut. The

analysis has been carried to second order by Callandreau, Darwin,

DeSitter, and others. When taken to a second order, the equipotential

surfaces assume the form

r = rq_l- c sin2_ ' - (3 c2 + _)sin22_ (ll)
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When compared with the equation of an ellipsoid of rotation valid to a

second order in ellipticity, that is,

r = rq(1- c sln2_ ' - 8_ ¢2sin22_')

it is noted that, as a result of the presence of the K term, the equipo-

tential surfaces are no longer true ellipsoids of revolution. The

term is itself a function of internal density distribution. By using

the density distribution as determined from6seismological data, Bullard
(1948) assigns a value to _ of 0.68 × 10- . By adopting this value

of _ and assuming that the equipotential and ellipsoidal surfaces each

coincide with the earth's equatorial and polar radii, the maximum devia-

tion between them is found to occur at latitude of 45° and amounts to

_rq = 0.68 x lO -6 × 6,371,000 _ 4 meters. Clearly then, from a practical

standpoint, even to second order, the equipotential surfaces can permis-

sibly be regarded a_ spheroidal in form.

The relation (lO) carried to second order assumes the more com-

plicated form:

2 merq2 _ _ ][ + _l (13)

where

C'_a = _2 _' - 2c' + i_(_,)2 + -74 _2 _ 7-6 ¢_'

c' =c-D--c2 +4 _-
42 7

_2_3

Gme

(_ is now the mean radius of the surface, that is, the radius of a sphere

enclosing the same volume as the surface) and qa and kI are parameters

appearing in the derivation which are dependent on the internal constitu-

tion of the earth. The relation (13), although no longer wholly independ-

ent of internal mass distribution, is quite insensitive to it and provides

a basis for what has been regarded as a fairly reliable estimate of c.
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It is well that the reader have constantly in mind certain factors

that might well contribute to a deviation from hydrostatlc equilibrium

on which the preceding analysis is based. Some of the more obvious fac-

tors are listed below:

(1) The materials of which the earth is composed are not wholly

devoid of structural strength.

(2) There is good reason to suppose that density adjustments in the

interior are still taking place, that is, heavy elements percolating to

the center and lighter elements migrating outwards.

(5) A substantial portion of the earth is still in a molten state.

Forced oscillations set up in this liquid core might conceivably be

augmented by magnetohydrodynamic dynamo effects.

(4) The axis of figure is not coincident with t_he axis of rotation.

(5) The earth's rotational speed is subject to slight changes and

will give rise to hysteTesis effects.

It is likely that factors (4) and (5) are quite negligible. Apart from

these, it is difficult to assess quantitatively the magnitudes of the
others.

Bearing in mind the uncertainties to which attention has Just been

drawn, the results of the preceding analysis must be interpreted with

some discretion. Fortunately, the analytical result that the earth is

to a second order of ellipticity spheroidal in shape is supported by

geodesic work; and it is actually on the basis of this empirically

determined fact that the development of the theory of the external field

of the earth to a second order of ellipticity proceeds.

Theor_ of external field.- The geoid approximates an ellipsoid of

revolution to within a second order of flattening. If the equatorial

radius of this ellipsoid of closest fit is denoted by rq and its

ellipticlty by e, then

r = rq(1- e sln2¢ ' - _ e2sin22_) (14)

If the potential over this surface is assumed to be constant and equal

to the value corresponding to the actual earth geoid, then, by Dirichlet's

theorem, the external field'is uniquely determined. The following expres-

sion for the external geopotential field can be derived:

L
1

9
7

9
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whe re

Ome _o

rq
l+_c+ K + c_ +

i _2r2cos2 _'+5

(19)

1 1 )

and

D = 2_ _2 _ _2 e_'

Although the external field is uniquely determined, the internal

mass distribution of course is not. However, the various harmonics do

impose certain requirements on the mass moments of corresponding order

without uniquely determining them. Thus, in the general case, there are

only five independent harmonics of the second order P2 (0) p_l;cosrx
8

' -2sin e ,

p2(2)cos2e
sin 28 and yet there are six independent second-order moments. In

the case under consideration in which there is both axisymmetry and sym-

metry with respect to the equatorial plane, there are only two independ-

ent second-order moments C (polar value) and A (equatorial value).

However, only a single requirement iS imposed by the second harmonic

term, that is,

3 C - A i _, + ¢(_ i i )
J = 2 merq2 = c - _ _ c + _ _' (16)

Inasmuch as an expression for the external geopotential field has been

obtained, an expression for the vector force field can be readily derived.

At the surface of the ellipsoid, the effective gravity vectors are normal

to it (by virtue of its being an equipotentlal surface) and the variation

of intensity is given by the following expression:
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g(¢')--r7 _-2

11 15, c + _(_,)2 17 ,)sln2_ ' ]= gq + _ K - _ Ca - _ ¢(7¢ - 15a')sln22_ (17)

where

It is convenient to replace the geocentric latitude _' by geo-

graphic latitude _ defined as the angle which the local normal to the

ellipsoid makes with the equatorial plane, since the latter approxi-

mates the latitude as experimentally determined by astronomical

measurements.

r = rq(l - ¢ sin2_ + _ 62sin22_) (18)
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gp- gqwhere 6 is clearly equal to gq

K' - _ e sin22

relation to gravity as flattening ( has for radius vector

and hence has same meaning in

5 _, - e 17

(19)

Measurements of the Earth's Field

Astrogeodetic measurements of the geometric form of the earth's

surface yield information pertaining to both its size and shape (that

is, rq and c). Investigations of normal gravity over the surface

(gravimetric measurements) permit the determination of both gq and

Now gq =
rq 2 \i

+ 6 - _') and, although it is theoretically feasible
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to use gravimetric measurements for the determination of rq, the uncer-

tainty associated with Gm e is so large that it invalidates any estimates

of earth's size obtained in this way. Thus, gravimetric measurements

provide data bearing on the shape but not on the size of the earth.

Astronomical measurements consisting of determinations of slight

perturbations to which the moon's motion is subject are in essence a

measurement of the irregularities in the earth's gravity field and, as

a result, are essentially a form of gravimetric measurement. They are

therefore subject to the same limitation, that is, they provide data

bearing on the shape and not on the size of the earth.

The remainder of this section is devoted to a brief description of

astrogeodetic and gravimetric measurements. Such measurements fall within

the highly specialized domain of practical geodesy and involve the intri-

cacies of precision measurements and the complexities associated with

analyzing statistically masses of data.

Astro_eodetic measurements.- If the earth were truly spherical,

its size could be determined by measuring the length of an arc on its

surface and the angle subtended by the normals to the sphere at the

extremities of the arc in question. The length divided by the angle in

radlans would serve to fix the radius. If the earth were a true ellips-

oid of rotation, two independent arcs would be needed to determine its

size and its elllptlcity.

From these simple examples it is possible to see that what is

involved is the measurement of arcs (the geodetic part of the measure-

ment) and the measurement of angles subtended by normals erected at the

extremities of such arcs (the astronomic part of the measurement).

Arcs are not measured directly but by the classical technique of

triangulation introduced by Snellius in 1615. The procedure is simple

in principle and consists of the measurement of a single base llne and

the angles of the triangulation net. Thus, the distance between any two

points of the net, specifically the distance between points A and B

(sketch 5) can be computed. B

/

A

Sketch 5
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Although simple in principle, the procedure is complicated in
practice. The chief bugbear confronting the geodesist is the fact that
light does not travel in straight lines but is refracted by the earth's
atmosphere. In order to minimize such effects in flrst-order geodetic
work, measurementof angles is restricted to the horizontal plane and
errors in angle measurementdue to refraction are kept down to an arc of
about 1/3 second. The upper bound to the length of the side of the
triangles comprising the net is thus set by horizontal intervisibility
between measuring stations. A lower bound has been set by experience
at about 2 miles. Shorter sides would lead to:

(a) Difficulty of defining extremity of arc with sufficient preci-
sion. Thus_ 1/2 second of arc (which is the precision aimed at in the
measurementof angles in flrst-order geodetic work) corresponds to about
1/5 inch at a distance of 2 miles.

(b) _Too rapid aecumuiation_6f error.

As it is, base lines are interposed every lO to 20 triangles to prevent
excessive accumulation of error.

With regard to base-llne measurement_this is done with Invar tapes
which are temperature insensitive and the slight temperature corrections
which are applied are therefore extremely accurate. During the making
of the measurements, a prescribed tension is applied to the tape either
through the use of weights or by meansof a spring balance. Moreover,
the tape is calibrated in a laboratory before and after each field meas-
ment. Subject to these refinements, it is believed that the measurement
of base lines is good to one part in 106.2 It goes almost without saying
that base-line measurementsmust be corrected for height above the geoidal
surface. The angles, of course, are not subject to such corrections
(unless allowance is madefor the fact that the local vertical is not
quite alined with the normal to the geoidal surface and such corrections
are presumably quite insignificant even to the standard of precision
presently under discussion). If the base-llne measurementis madeat
1 kilometer above the geoidal surface, which is representative of a con-
tinental land mass (see sketch 6)
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2The author is informed that the use of the Invar tape has been

largely supplanted by the geodimeter in many countries.
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A B

Intersection of normals

at a and b

Geoldal cross section

Sketch 6

ab 6378 1

AB 6378 + 1 6378

The overall accuracy in geodetic measurement, bearing in mind that
inevitable uncertainties involved in individual measurements are reduced

by least-square adjustments throughout the triangulation net, is about

0.15 meter per square root of kilometers.

Astronomical measurements.- As the result of the undulations of

the geoid, the normals to the geoldal surface at points A and Bdeviate

slightly from the lines drawn _ through the points in question to the cen-

ter of mass of the earth. (See sketch 7.) When the differences in

local timekeeping are measured, it is the angle k' which is deter-

mined. Astronomical measu#ement of latitude at A and B determines the

angles _a' and _b'" If a'b' is computed and then divided into the

measured arc AB, the result is a measure of mean radius of curvature of

the geoid. At certain locations this value will exceed the mean radius

of curvature of the approximating ellipsoid and at other locations the

reverse is true. If these arcs covered the entire earth's surface, these

effects would cancel out when a statistical average is taken. Unfor-

tunately, further complications arise. The discussion, as developed thus

far, has implied that the local vertical is normal to the geoidal surface.

Actually, the local vertical defined by the direction of a plumb bob is

influenced by local topographic features, that is, mountain ranges or

mass deficiencies or excesses in the crustal layers in the proximity of

the observing stations. An attempt is made to allow for such topographic

effects by applying some form of adjustment to the measured vertical.

Here# two schools of thought are encountered; one favoring isostatic

reductions in some form or other, and the other favoring free-alr reduc-

tions. Those favoring isostatic reductions appear to argue as follows.

Since free-air reduction does not adequately represent the influence of
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topographic features, its application leads to systematic differences

between continental masses and oceanic regions, and since moreover

astrogeodetic measurements are by their very nature limited to continental

regions, the results are correspondingly biased. The proponents of free-

air reduction contend, on the other hand, that Isostatic compensation is

at best an approximation and so-called isostatic reductions are not wholly

valid and do indeed introduce systematic errors between land and water

regions which exceed those associated with free-air reduction. The issue

remains undecided.

The advent of electronic synchronization of time has made it pos-

sible to determine longitude with the same precision as latitude and

permits the use of both meridional arcs and parallels in the determina-

tion of the earth's figure. Prior to this, it had only been possible

to use meridional arcs.

Different investigators using different arc systems have obtained

somewhat different values for the size and shape of the earth. (See

table I.) By and large, the later determinations based as they are on

more extensive arc data are more reliable. The determination which is

currently favored is the recent determination of Chovitz and Fisher,

based on four arcs:

(a) A meridional arc extending from Chile to Canada

(b) A meridional arc extending from South Africa to Scandinavia

(c) A parallel traversing the United States

(d) A parallel extending from Western Europe to Siberia

The values obtained by assuming a flattening 3 c = 1/297 are

(a) Free air, 6,378,240 ± lO0 meters

(b) Isostatic, 6,378,285 ± i00 meters

In 1924 the International Astronomical Union adopted the HayTord

spheriod (which represented the best determination up to that time)

_Realizing that perhaps more accurate values of flattening are to

be obtained by using astronomic techniques, some investigations have

assumed a value of _ at the outset and used the geodetic data solely

to determine the earth's equatorial radius.
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as the international ellipsoid. The following figures pertain to this

ellipsoid:

rq = 6, 3783 388 meters

1
c = = 0.0033670

297.00

_' = 0.00344991

r = 6,378,388(1- 0.003 S70si 2¢+ 0.OOOOO71sin2 ¢)

(where ¢ is the geographic latitude).

(20)

Area method in astro_eodetic measurements.- Thus far, the discussion

has been centered on arc measurements. There is another technique of

astrogeodetic measurements termed the area method which has as its prime

objective the determination of the ellipsoid of closest fit to a given

region and thus is best adopted to the preparation of maps of the region

in question.

It is assumed that the region in question is covered by a two-

dimensional triangulation network. A point in the proximity of the cen-

ter of the net is chosen as a datum point. This point is assumed to lie

on an ellipsoid of specified dimensions. Its positlon on the surface

and the orientation of the ellipsoid relative to the triangulation net

is fixed if a latitude and longitude is ascribed to the datum point as

well as to the azimuth of one of the lines of the net radiating from the

point in question. (It would be logical to assign the astronomically

determined values to these elements at the outset.)

The size and shape of the ellipsoid and the latitude and longitude

of the datum point _nd azimuth angle comprise the five elements defining
the geodetic datum. @ On the assumption that all points of the network

fall on the surface of the reference, their positions can be computed.

At a number of preselected points of the network the geographic latitude

and longitude (defining the inclination of the normal to the elllpsoidal

surface) can be computed. At these same stations the astronomical latl-

tude and longitude is measured and thereby defines the inclination of the

normal to the actual geoidal surface. A measure of the closeness of fit
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4The geodetic datum used in the U.S.A. has as its initial point

Meades Ranch in Kansas, latitude 39o13'26"686, longitude 98032'30'.'506,

azimuth to Waldo 75°28 '14"52. The spheroid used in the triangulation

is the Clark spheroid of 1866 (equatorial radius 6, 378.206 km;

1/e = 294.98).
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of the ellipsoid to the geoidal surface over the region considered is

provided by the relative inclinations of these two normals. Clearly

then, the best geode_ic datum for the region is obtained by adjusting

the five elements constituting the datum in such a way as to minimize

the mean square deviations between the ellipsoidal and geoldal normals.

Actually the geodetic datum as thus defined is restricted to the extent

that it is required to pass through the datum point. If this restric-

tion is relaxed and the height of the datum point above the assumed

ellipsoidal surface is regarded as a sixth element of geodetic data, an

even closer fit couldbe obtained. Apparently, geodesists do not think

that such ultrarefinements are Justified. Frequently in practice not

all five elements are necessarily adjusted. Thus, one of the ellipsoids

will be selected and the adjustment made solely with respect to the

remaining three elements, longitude, latitude, and azimuth. This condi-

tion explains the use of the Clarke ellipsoid in the United States of

America datum.

Ellipsoids derived in this way will not, in general, be centered

on the earth's center and will be wholly inadequate as a reference sur-

face for distant regions. The problem of tying together these various

regional geodetic nets is far from complete.

As in most branches of technology, innovations are being introduced

intogeodesy. Currently, trilateration by radar is the most accurate

way of connecting continents. In addition, the capability of shooting

flares to high altitudes and putting satellites into orbit permits for

the first time the geodetically tying together of the continents by using

triangulation techniques.

Gravimetric measurements.- The problem is very simple in principle -

it is to determine an expression of the form

g = gq + _ sin2¢ - e _ - _ e sin22

which provides thebest fit to the observed gravity distribution over

the earth's surface, Within recent years, it has been possible to make

reasonably accurate measurements of gravity intensity over the ocean

masses by using the Vening Meinesz pendulum apparatus. This instrument

owes its origin to a desire on the part of Vening Meinesz to make meas-

urements of surface gravity in Holland which happens to be subject to

unusually large horizontal displacements. The insensitivity of the

apparatus to horizontal displacements enables its use aboard submarines

to measure gravity over the oceans (of course, it is necessary that the

submarine operate at sufficient depth to avoid vertical motions due to

surface waves). Although the precision of such measurements falls some-

what short of the precision of measurements on stable continental masses,

the data thus provided form a valuable adjunct to data obtained over
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land masses and in this regard gravimetric measurements have the edge

over astrogeodetic measurements, and the relative significance Of free-

air reduction as compared with isostatlc reduction discussed in relation

to astrogeodetic measurements is correspondingly lessened.

Gravity measurements are of two kinds:

(a) Absolute measurements having a precision of five parts in

1,000,000.

(b) Relative measurements having a precision of one part in

1,000,000,000.

These values are given in reference 1 (p. ]20). To this precision it is

necessary to make due allowance for the attraction of the moon and the

sun. Such precision of the relative measurements is particularly sur-

prising when one bears in mind they are made by using the spring balance

principle, that is, by observing the extension of a fine silica or Invar
wire.

Because of the superior accuracy of relative measurements over

absolute measurements, it has become customary to make absolute meas-

urements of gravity only at a number of key stations. Elsewhere, gravity

is measured relative to one or other of these key Stations. By interna-

tional agreement the Potsdam value of gravity is accepted as the inter-

national datum in all gravity measurements. The initial determination

of gravity at Potsdam made in 1906 by Kuhnen and Furtw_ugler was

981,274 ± 3 milligals. It is now believed that this value is slightly

high as the result of their applying an erroneous correction for support

flexure. This error has been confirmed recently by absolute gravity

determinations made at National Bureau of Standards in Washington, D.C.,

and at National Physical Laboratory in Teddlngton, England. The revised

value recommended by Herrick in reference 2 is 981,260.9 ± 0.7 milligals.

By using the original Potsdam determination as defining the general

level of gravity intensity, Heiskanen in 1928 estimated the intensity

of equatorial value of gravity at 978, 049 ± 1 milllgals. This value,

taken in conjunction with the parameters e,m adopted in the definition

of the international ellipsoid was proposed by Cassinis and adopted by

the International Geodetic Association in 1950 as defining the inter-

national formula for normal gravity

g = 978,049(1 + 0.0052884 sin2_ - 0.0000059 sin22_)

(_ is geographic latitude). This relationship is based on a flattening

e : 1/297.
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From time to time it is to be expected that a slight adjustment

will be made to the flattening factor and to the absolute gravity at

Potsdam. Both adjustments will contribute a slight change in the value

of ge" Clearly a c_ange in flattening factor will not alter the average

of the observed gravity values

g = gq(l + _ sin2¢ ' + _ sin22¢ ') (21)

(by reverting to geocentric latitude _)

[g ( Z
gm= N =gql+g N

(22)

If it is assumed that measurements of gravity are made at points

uniformly distributed over the earth's surface (such an assumption does

not represent too great a departure from the truth; see ref. 2), then

_/2sin2_ ' cos _' 1
d_''

(sin2_')mea n = = _'

[./2 ¢'cos d_'

uO

2 , ¢,sin 2¢ cos d_'

u 0 1

(sin22_')mean - f_/2cos _' d_' = I-_

_0

Thus

gm=gql+_

By virtue of the change in c, then gq, _, and

change but not gm,

(23)

7 are subject to

Z_,m = 0 =Z_gq 1 +y iS + 7 + gq_h_ + A7

Agq 1 _ 8 A7
gq 3

(24)
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Since 7 is itself second order, adjustments to it can be ignored on

the grounds that they will be of even higher order.

1_ =5-_- c +_5,,_2- 1-3-_,_2 14

where _ is not subject to change and e_ is second order and its varia-

tion can therefore be ignored. Hence

Agq i
-- -- -
gq 3

Adjustments to the Potsdam gravity Just raise or lower the gravity

value as a whole. If this adjustment is denoted by 2_, then

( l)gq = gqo i + _g +yA¢
(26)

This formula serves to determine the adjustment to the equatorial gravity

resulting from adjustments in both flattening factor and Potsdam gravity.

Some of the gravity formulas derived by different investigators over the

past 60 years are given in table II.

As in the case of astrogeodetic measurements the more recent deter-

minations, based as they are on more extensive gravimetric data, are

presumably the more reliable.

Sufficient gravimetric data exist to permit the inclusion of longi-

tude terms in the gravity formula. Some attempts to do this are given
in table III.

All results predict maximum equatorial gravity in the neighborhood

of the longitude of Greenwich and this result can be shown to imply a

lengthening of earth's figure in this direction. A number of leading

Russian geodists have proposed the following triaxial as a figure of
reference.

Mean equatorial radius = 6, 378,245 meters

rq - rp

rq

where rq is mean equatorial radius and rp is polar radius.

1

298.3
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J

1
Flattening of equator ¢' =

30, 000

Longitude of long axis ho = 15°

The difference between the ellipsoid of rotation and the triaxial

ellipsoid is small. Thus in the case of the Russian ellipsoid, the

dimensions of which are presented, the difference between the long and

the short equatorial axes is only about 200 meters. Western geodesists

view the small advantages to be gained by its adoption as hardly com-

pensating for the additional complications.

Astronomical measurements.- As mentioned previously, this type of

measurement involving the observation of the moon's motion can be regarded

as a gravimetrlc measurement made at a remote distance. It has the advan-

tage that, by virtue of its great distance, the higher harmonic irregu-

larities have been smoothed out, Also since the moon is in orbital motion,

nature herself, to some extent, does our statistical averaging for us.

Such measurements are discussed in more detail in the section concerned

with the fundamental astronomical constants.

The Irregular Part of the Earth's Field

Harmonic analysis.- Up to the present, the earth has been regarded

as being spheroidal in form. Deviations from such spheroidal form are

indeed relatively minor and it is only within recent years that it has

become a matter of practical necessity to determine the extent of devia-

tion. The purpose of this section is to consider the techniques avail-

able for the determination of the irregularities of the earth's gravita-

tional field. Let us denote by W the potential associated with the

actual earth's field; U has been used to denote the potential asso-

ciated with the spheroidal earth. The difference is denotedby V; thus,

V=W-U

and this relation might well be termed the deviation potential. It can

be expressed as a series in spherical harmonics as

s2 s3 S4 s5

V = r--_ + _-_ + r-_ + 7 + " " "
(27)

An attempt will be made to express the deviation of the geoid and the

deviation in surface gravity in terms of the deviation potential.
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Sketch 8

Points P and Q (see sketch 8) have the same geocentric coordinates;

P, however, is located on the spheroid and Q is located on the geoid.

The definition of the potential is such that it represents the work done

on a unit test particle by the gravitational field as the particle is

brought from infinity up to the point in question. Such being the case,
then

Wp = WQ + _N

where g defines the component of the actual gravity force in the direc-

tion QP averaged over the segment QP. Hence

Wp - WQ = _N

Since the difference Wp - WQ is a second-order quantity as is

indeed the quantity N, it suffices to replace g by g where g is

now the normal gravity associated with our reference spheroid. In the

analysis of the spheroidal earth certain conditions were imposed; one

was that the spheroid was to have the same mass as the earth itself and

the other was that the potential of the surface of the spheroid refer-

enced to infinity was to be the same as the potential of the actual

geold. For mass distributions which are almost spherically symmetric

the potential of an equipotential surface determines the volume enclosed

by that surface. In other words, if the masses are rearranged slightly

although the equipotential surface itself would be deformed to a slight

extent the volume enclosed by that surface would not be subject to change

to a first order. It follows that the volume of the spheroid is essen-

tially the same as the volume of the geoid. This being the case, then
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Such a series development serves to define deviation of the geold from

the spheroid of reference.

The deviation of surface gravity will be considered next.
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Sketch 9

The actual gravity at point Q (see sketch 9) is equal to the normal

gravity at point P plus the deviation in gravity or the gravity anomaly

which is represented by Zhg. If the intensity of gravity in the actual

potential field is denoted by unprimed quantities and the intensity of

gravity in the field of the spheroidal earth by primed quantities, then

gQ = gp, + Z_g

or

Zig = gQ - gp, (29)

Howeverj by definition

_w _u Sv _v
gQ = - _-_ = _r _r gQ' - _r

Substituting this relation into equation (29) yields

_v
Z_g = gQ, - gp, - _-_
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Gme
However, g' to a first order is equal to and hence

r2

2Gm e

gQ, - gp, - r3 N =_ 2gNr

Thus the gravity anomaly is

= _ 2__ _v
r _r

and when the expression already derived for N is substituted into this

relation

_g : 2v _v (30)
r 8r

Hence, the expressio n for Ag in the form of a harmonic series is

s2 2s3 3s4

Ag = r--_ + r-_--+ 7 + " " "
(31)

In the light of these series developments for N and Ag, if the

gravity anomalies were measured over the entire earth's surface it would

be possible in principle to evaluate the harmonic terms of series (31)

and hence calculate the form of the geoid over the entire globe, ocean

masses as well as land masses. Thus by gravimetric analysis it would

be possible to establish the actual form of the geoid which is something

that could not be done by astrogeodetic measurements.

Stokes formula.- In a wide variety of problems in applied mathematics

whether they be problems in dynamics of vibrating systems, problems in

elasticity, or problems in heat conduction, there are two approaches open;

one is the approach of determining the response to a sinusoidal fluctua-

tion and the other is that of determining the response to a unit impulse

(the Fourier approach or Green's approach, respectively). So it is in

the present problem. Thus a unit gravity anomaly, that is, the gravity

anomaly which at one point P is equal to unity and everywhere else is

zero can be considered. By using the series developments already derived,

it is then possible to compute the form of the geoid associated with such

a gravity distribution. It is found to be of the form
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where

Fo = csc ½, + 1- 5 cos _- 6 sin ½,- , cos _ iOge[sin ½,(i + sln ½ _1

and _ is the angle between the direction of 8,_ and 8p,_p. In

the general case, therefore, in which the gravity anomaly is Z_g arbi-

trarily distributed over the entire earth's surface, the deviation of

the geold is then given by the integral expression

P
N = l-l-- / FoZ_ dS (32)

4_gr

where Fo is clearly the influence function or the Green's function

appropriate to the problem. This formula was first derived by Stokes.

At first sight it appears to offer no particular advantage over the

harmonic approach which has been described previously, since it also

necessitates knowledge of Z_g the gravity anomaly over the entire earth's

surface. Circumstances, however, can be envisaged in which it would be

definitely advantageous. Thus, suppose that the deviation of the geold

at any particular point is insensitive to gravity anomalies over the more

distant portions of the global surface. In this instance the integration

over a neighborhood could be limited in the immediate proximity of the

point P. Heiskanen and Vening Meinesz (ref. l) have suggested that such

is indeed the case. Since they regard the deviations from equilibrium

as being relatively minor and moreover relatively localized, they suggest

as an upper limit to the deviation of gravity anomaly, 30 milligals

megameter 2. If the deviations of the center of such a gravity anomaly

are computed by using Stokes' formula they are found to be of the order

of 20 meters and external to the circle 3,000 kilometers radius the

deviation is of the order of 1.O0 meter. This being the case, they have

calculated that, if Stokes' formula is used to calculate the deviation

of the geoid at the center of an area over which gravlmetric data are

available to a radius of 3,000 kilometers, ignorance of the gravity

anomaly in the more distant regions is not likely to lead to an error

in excess of more than 2.6 meters which is quite insignificant. Jeffreys

(ref. 3), on the other hand, holds a radically different view as to the

extent of the earth's deviation from equilibrium. He has suggested that

there are very wide-scale undulations in the earth's gravitational field

with amplitudes up to i00 meters and, if he is to be believed, then

Stokes' formula is only applicable if the gravity measurements are

available over the entire earth's surface. Within recent months, anal-

ysis of orbital data has decided the issue in favor of Jeffreys. (See

section "Geophysical Implications.")
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USE OF EARTH SATELLITES FOR THE DETERMINATION OF

THE EARTH'S GRAVITATIONAL FIELD

Nature of the Problem

The motion of an earth satellite is modified by the successive har-

monics of the earth's gravitational field and by observing and measuring

these perturbations one can deduce the magnitudes of these successive

harmonic terms. In addition, there are a number of extraneous perturba-

tional influences and although these complicate the analysis of the

earth's gravitational field, if a broader viewpoint is taken these addi-

tional perturbations are to be welcomed rather than deprecated, inasmuch

as they themselves provide data of very genlune scientific interest.

Among these extraneous perturbational influences are (a) air drag, (b)

electromagnetic drag, (c) lunlsolar perturbations, and (d) solar radia-

tion pressure; influences (a), (c), and (d) have been proven to be of

significance and are detectable in the case of the Vanguard orbit. There

is some controversy with regard to the significance of influence (b).

There are other perturbational influences, one such influence being the

tidal influence. Although this influence has been examined theoretically,

no one would claim that this is other than of academic interest at the

moment. A short discussion of these extraneous perturbational influences

is included because not only do they have intrinsic interest in them-

selves but in addition they have direct bearing on our analysis of the

earth's gravitational field, inasmuch as they will establish, by virtue

of the irregularities to which they are subject, the gravitational noise

level which will set a limit to the extent to which the harmonic analy-

sis can be carried and will also determine the feasibility of detecting

some of the very minute relativistic effects. One of the requirements

imposed on the orbit of a geodetic satellite is that its perigee distance

not be too great. As a result therefore it is found that, of all the

extraneous perturbational influences, air drag is indeed the dominant

one. It is logical therefore that this influence is the one that is con-

sidered first.
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Discussion of Extraneous Perturbations

Perturbations associated with air dram.- Air drag forces are opera-

tive at each point of the satellite's orbit; however, they are clearly

maximized in the neighborhood of perigee where the air is densest and

where the velocity of the satellite is greatest. Indeed for orbits

having eccentricity in excess of 0.02 virtually the entire drag contribu-

tion comes from the immediate proximity of perigee and the air drag can

be regarded as inducing a succession of retarding impulses as the satel-

lite passes through perigee. This condition will give rise to a
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progressive shrinking of the satellite orbit with an associated diminution

in periodic time and a decrease in eccentricity. The changes wrought by

the earth's gravitational field are of an entirely different nature con-

sisting as they do of progressive movements of the node and perigee with

superimposed periodic variations in all the orbital parameters. Thus,

the task of separating the influence of air drag from that of the gravi-

tational effects is simplified. Thus, it may be said that the coupling

between air drag on the one hand and gravitational field on the other is

relatively minor.

Jacchia 5 noticed that superimposed on the progressive change in the

satellite's orbital period was an oscillation of 27-day periodicity.

(See sketches lO to 12 which are taken from ref. 5.) Some argued that

such a periodicity was in some way associated with the moon's motion,

perhaps the result of the perigee passing through the lunar tidal

bulge. The latter contention was clearly untenable since the moon pro-

duces not one tidal bulge but two; one at the sublunar point and the

other at the point diametrically opposite. The most plausible explana-

tion to date has been advanced independently by Jacchia (ref. 5) and

King-Hele (ref. 6). They associate the 27-day periodicity with the sun's

rotation on its axis. For some time it has been known that the magnetic

field of the earth is subject to a 27-day periodicity. This periodicity

has been attributed to the existence of activity centers on the surface

of the sun. These activity centers may persist for a period of several

months. From them it is believed particles are continuously ejected.

Each revolution the earth is sprayed by these particles and this spray

gives rise to the variation in the earth's magnetic field and might equally

well be expected to give rise to a change in the density of the atmosphere

as a whole. _ince the 27-day periodicity was particularly marked in the

case of Vanguard I which happened to have the highest perigee, it appears

that the density change is proportionately greater at higher altitudes.

Such an explanation implying as it does that the atmosphere as a whole

is subject to change is borne out by the observation that if the orbital

data of Sputnik II, Sputnik III, and Vanguard I are compared, the peaks

and hollows occur roughly in the same location. Further evidence in

support of this contention was not long in forthcoming; thus, Jacchia

noticed the orbital period of Sputnik III was subject to particularly

abrupt changes in July and December of 1958 (sketch 13 from ref. 7),

in each instance, about 24 hours after the onset of a major solar flare.

No such change was noticed, however, in the case of Vanguard I. It is

known that the flares give rise to plasma clouds and it is further known

that it takes approximately 24 hours for these plasma clouds to reach

the proximity of the earth. In this instance, it is believed that the

plasma cloud on reaching the earth filled the outer part of the Van Allen

5Harvard College Observatory Announcement Cards 1391 and 1392.

(See ref. 4, p. 345.)
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radiation belt. Particles overflowed through the polar extremities of

this belt, heated the air in the auroral zones, and produced an increase

in density. The orbit of Sputnik III happened to pass through the auroral

zone and this condition would account for the augmented drag. For

Vanguard I, on the other hand, which had a lower orbital inclination, the

effect did not manifest itself. There are, however, still certain fea-

tures awaiting explanation; one such feature is the fact that the 27-day

periodicity in the geomagnetic field is only detectable during periods

of solar minimum, whereas the 27-day periodicity in the orbital period

of the earth's satellites has, however, been observed during the past

period of solar maximum.

In addition to the 27-day periodicity, an examination of the decrease
in the orbital period disclosed a periodicity of somewhat longer duration.

In sketch 12 those intervals during which the perigee is on the night side

of the earth and those intervals when the perigee is on the daylight side

have been defined. The drag level of the earth is higher when the perigee

is in daylight than when it is in darkness. This result is to be expected

since the air on the day side is warmer and hence the density at any par-

ticular altitude is greater. The same effect is to be noted in the case

of Vanguard I_ thus, there is an increase in a drag level as the perigee

moves through the proximity of the subsolar point. (See sketch ll.)

In addition to these periodic variations in drag level, air drag

also induces a change in the orbital inclination. This effect is only

manifest during the final stages of the satellite's orbital decay when

the satellite is moving through relatively dense air. The earth's atmos-

pheric mantle participates, of course, in the earth's rotation and this



38

participation induces cross winds which will result in a decrease of

the inclination of the sate!lite's orbit (sketch 14) as is observed.

The assumption is that the satellite is moving in a counterclockwise

direction when viewed from the north. If the satellite were moving in

the reverse direction, then the orbital inclination would be expected

to increase.

/ Torque applied by crosswind forceOrbital angular

momentum vector

Crosswlnd f

Crosswind force
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Sketch 14

Jastrow (ref. 7), although agreeing that the observed variations in

drag intensity are attributable to solar activity, has suggested that

these effects may well not be the result of a direct increase in air

density but rather the result of an augmentation of ionization level which

in turn will increase the electromagnetic drag forces. On this question,

there appears to be a difference of opinion and this seems to be an oppor-

tune moment in which to introduce a brief discussion of electromagnetic

perturbation forces.

Electromagnetic perturbation.- An earth satellite, by and large,

moves in an ionized medium, the ionization level being particularly high

within the radiation belts. The temperature of the medium is such that

the speed of the ions is appreciably less than the satellite speed.

The speeds of the electrons, on the other hand, are appreciably greater.

As a result, the ions are encountered only by head-on impact; the electrons,

by virtue of their great mobility, impact the satellite from all direc-

tions. As a consequence, there are a much greater number of impacts of
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electrons than there are of ions and, as a result, the satellite acquires

a negative charge. Jastrow and Pearse (refs. 7 and 8) were the first to

examine this effect _nd estimated that a voltage of the order of

1,000 volts might well be acquired during passage through the inner

radiation belt. More recent and more detailed analyses have suggested

that the original estimate of Jastrow and Pearse grossly overestimated

the magnitude of the effect and that the negative voltage acquired would

be more likely to be of the order of one-quarter of a volt.

The charged satellite moving through the earth's magnetic field

would be subjected to a perturbing force and its orbit would be to some

extent modified. The magnitude of the effect can be gleaned from ref-

erence 9, in which a satellite of 0.8 pound mass is moving in a circular

orbit with a radius of 6.5 X 103 kilometers within the earth's magnetic

equatorial plane. The satellite in question suddenly acquires a charge

of 10-3 abcoulombs and it is calculated that the satellite during one

circuit will be _erturbed to the extent of approximately 20 kilometers.

On the basis of these numbers, one might adduce that the effect is a very

significant one indeed. However, when the matter is considered in a

little more detail, a mass of 0.8 pound, if the satellite is assumed to

be a balloon satellite composed of Mylar, would have a diameter of about

5 meters and for such a sphere to hold a charge of 10-3 abcoulombs implies

that the voltage would necessarily be of the order of 40 X l06 volts.

Clearly then on introducing more realistic numbers pertaining to the ratio

of mass to charge the orbital deviation is going to be of the order of

millimeters rather than kilometers and the effect is going to be quite

undetectable.

There is a further effect to which a charged satellite is subjected.

A satellite having a negative charge becomes surrounded by a positive

space charge and hence the cross section relative to ion impact (and it

is these ion impacts which determine the intensity of the electromagnetic

drag) is increased. Jastrow and Pearse estimated that the increase in

cross section may be a factor of tenfold to fiftyfold. However, it is

seen that Jastrow and Pearse did indeed grossly overestimate the magni-

tude of the effect in question and the present belief is that the effect

is very small. For this reason, the consensus is that variations in

drag intensity observed in the satellite's motion are to be attributed

to air drag rather than to electromagnetic drag.

Lunisolar perturbations.- A detailed examination of the trajectories

of Vanguard I disclosed a periodic variation in perigee height of about

1 to 2 kilometers with a periodicity of 449 days. Such a variation in

perigee could not, of course, be attributed to drag forces nor could the

periodicity be associated with any of the harmonics of the earth's grav-
itational field. It was Kozai 6 who first determined the source of this

6Kozai: New York Times, Aug. 21, 1959.
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perturbation as the lunisolar influence. Suchperturbations can become
very appreciable if resonances occur. Thus, if the perigee moves in
step with the sun or the moon, there may result a progressive change
in perigee of the order of 1 kilometer per day over a period of several
years. Clearly, due allowance must be madefor this perturbation in
computations of the lifetime of earth satellites.

Solar radiation pressure.- A further perturbation which was discerned

in the case of Vanguard I was a variation in perigee height with a period

of 850 days. Such a periodicity corresponded to the diurnal motion of

perigee, that is, the time taken for the perigee to make one complete

rotation relative to the sun. It seems reasonable to suppose that this

perturbation is the result of solar radiation pressure. It may occasion

some surprise that radiation pressure forces induce changes in orbit com-

parable to the lunisolar perturbations since the radiation pressure forces

are only about 10-5 of the gravitational forces. However, one must bear

in mind that the solar gravitational forces influence the earth and the

satellite almost to the same extent and the gravitational effect is the

difference between two large numbers whereas in the case of radiation

pressure this condition influences the satellite orbit alone. This per-

turbational influence also must be considered in computations of the life-

times of earth satellites. Therefore, the magnitude of the solar radia-

tion perturbation increases as the ratio of satellite area to satellite

mass increases and thus satellites such as Echo will be particularly sus-

ceptible to perturbations of this kind.
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Detailed Analysis of the Earth's Gravitational Field

The presentation in this section follows closely, albeit superfi-

cially, the treatment as given in reference i0. The zonal harmonics

by virtue of their axisymmetry do not introduce time dependency into

the gravitational field as a result of the earth's rotation. The tes-

seral harmonics do. It is intuitively obvious, however, that the influ-

ences of these tesseral harmonics will be effectively smoothed out

in the case of Vanguard and other satellites which have been used thus

far for geodetic purposes and in order to detect the tesseral harmonics

it would be necessary to use a satellite having an orbital period of

approximately 24 hours. Any changes in periodic time therefore must be

attributed to the effect of air drag. From the observed changes in

periodic time one can compute the associated changes in the semimajor

axis. Hence, since drag does not produce any change in perigee distance,

the variation in eccentricity resulting from air drag can be computed.

Denote the drag contribution to eccentricity by Ae, denote the measured

value of the eccentricity by emeas , and the eccentricity which would

have been measured had drag forces not been operative by eg. Then

eg = emeas +Ae
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From an empirical analysis of the orbital data

eg = eo + Ae sin _ (33)

The orbital inclination i itself is not significantly influenced

by drag except in the final stages of orbital decay. Thus,

ig = imeas = io + Ai sin _ (34)

The influence of air drag on the location of the nodal point and the

perigee position are somewhat more complicated. Thus, the rate of nodal

procession _ and the rate of perigee movement _ are given by

= 3 n cos i

2 p2_ c2, ° (35)

and

_ = p2_( 1 - 5 sln2i)C2,0
(_)

It will be noted that these rates are not only dependent upon the

oblateness of the earth but are also influenced by the semimajor axis

and the orbital eccentricity and 3 since thes_ parameters are in turn

influenced by drag, drag will in turn modify to some extent both

and 2. If the change in the semimaJor axis induced by drag during the

interval, epoch up to time T, is denoted by 8a then the drag contribu-

tion to nodal procession at time T is given by

4Gmeag/2(1 e2) 2

The drag-induced change in the nodal location after time t is therefore

_t t
= (_)d, = -

0

By the same token

- (Sa)d'r

4Gmea9/2(1 e2)2 C2,0\l + e/ 0

gko = _tt(sgo)dT = 3(4- 5 Sin2i) C _7- e h _t
0 8_--a9/2(_-- e_) 2 2' °_z--_e /J to (Sa)dT
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Thus, the following expressions are obtained

Ng = _m + Z_q = _O + _0( t - to) + AD cos (37)

and

_g = _m + Zko = mO + _o(t - to) + A_ cos _0
(38)

Equations (33), (34), (37), and (38) serve to define the time

dependence of the orbital parameters resulting from gravitational field

alone. Thus, the influence of air drag is effectively eliminated. Denote

the earth's gravitational field by the following series:

The tesseral harmonics are omitted for reasons already given. The first

harmonic is omitted by virtue of the fact that the origin of the coordi-

nate system of reference is placed at the center of the earth. The
second and fourth harmonics contribute to the progressive movement of

the node and perigee, that is, they contribute to _0 and _0 and the

measured values of these parameters can be used to deduce the magnitude

of both the second and fourth harmonics. In this way, the following

values are obtained:

C2, O = -17.55 ± 0.001 (megameters)5(kiloseconds) -2

C4, 0 = 1.]2 ± 0.004 (megameters)7(kiloseconds) -2

The sinusoidal variation of orbital parameters are attributed to

the third harmonic component of the earth's field. If the potential

associated with this harmonic component is denoted by the following

expression:

W3 C530 P3(O) C5___0[5 sin2_, 3
= r4 = r4 V - _ sin _')

(40)

where _' is the geocentric latitude, then

sin _' = sin i sin u

where i is the orbital inclination and u is the distance of the

satellite from the nodal point. The following expressions are given in

Moulton (ref. ]2) for r and u in terms of the orbital parameters.
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r = a(l - e cos M + . .)

u = e + M + 2e sin M + .

When these substitutions are made, it is found that W 3 has time depend-

ency as the result of terms involving _ and M. The terms involving

M represent high-frequency fluctuations and are rejected on the same

grounds as the tesseral harmonics were rejected. Thus the following

expression for W 3 is obtained:

W 3 = _ a4
(41)

The time rates of change of the orbital parameters resulting from

this perturbational potential have been given in reference 12 (p. 399):

da
_ = 0
dt

de _- e 2 _W 3

dt na2e _ko

di
m

dt

cos i 8W3
m

na2_ sin i _

d_ 1 _W 3
w _ m

dt na2_- e 2 sin i _i

dm

dt

cos i _W3 E - e2 _W3
-- +

na 2_ sin i _i na2e _e

These expressions define the time rates of variations of the orbital

parameters resulting from the third harmonic alone. However, the fluctu-

ation in both e and i will induce fluctuations of corresponding

periods in _ and 2, through the earth's oblateness terms. Hence, it

is necessary to apply corrective terms to the expressions given for
d_/dt and dm/dt. Thus,

1 _w3 _m+_"
d-_ = na 2 _ sin i _-_- + 8-_
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d_ cos i 8W3 _- e_- 8W3

dt na2_-_ -_ sin i 8i na2e _e

The terms which are underlined represent coupling between the second

and third harmonics.

On making the necessary substitutions the following equations are

obtained:

KIC3, 0 sin _ = Ae sin

K2C3, 0 sin _ = Ai sin

K3C3, 0 cos _ = A_ cos

K4c3,o cos_ = A_ cos

The equation involving de/dt and the equation involving di/dt are,

however, interrelated to the extent that angular momentum about the

earth's polar axis is preserved. Insofar as the gravitation component

is concerned, no change takes place in the semimaJor axis and any decrease

in inclination must be accompanied by a corresponding reduction in eccen-

tricity. Of these two equations, the one involving eccentricity is

retained on the grounds that the measured value of eccentricity is known

to a higher degree of precision than is the measured value of orbital

inclination. Thus, three equations remain from which to determine the

constant A_ O" These equations are solved by the method of least squares

and yield a_alue of A3,0 of 0.25 ± 0.03 (megameters)b(kiloseconds) -2-

Thus the following expression for the earth's gravitational field is

obtained when the determined values of the various harmonics are

introduced:

w = 398.618 17.555p2(o)+ o.2_ p3(o)+ 1._ p4(o) (42)
r r3 -_- -_-

In the notation adopted in the section "Theory of External Field"

W = Gme_ -_q j(_)3(_ sin2_,) + r 4 I
rq Lr + - H(_) P3(sin _')+ 8 D(__qq)Sp4(sin ¢'

(43)
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whe re

Gme = 398.618 (megameters)3(kiloseconds)i 2

J = 1.6258 x i0-3

H = 2.41 x 10 -6

D = 7.5 X 10 -6

When the earth is assumed to be in a condition of h/drostatic

equilibrium, the potential is

U = 398.618 : 17.572 P2(O) 1.95 P4(O) (44)
r r5 +7

( l)The potential in question corresponds to a flattening of 2--_.8"

The difference therefore defines the departure of the earth from

equilibrium. This difference is associated with the deviation potential
of

V = W - U = 0.183r5 P2(0) + 7_-0"25p3(O) 0.83r5 P4 (0) (45)

By using equations (28) and (51) one can compute the deviation

values of surface gravity and the departures of the geoid from the

equilibrium spheroid:

7

_.u± L 6. 3783

ag = [- o.183 P2(O)+
6. 5784L

+ o..25ps(O)
6.3784

7

0.85 P4(OH X 106 meters

6.3785 J
(46)

0.5

6. 5785 P5 (0) 2.49 )I6_ 3_'6 P4(0 X 105 milligals

(47)

The results are plotted in sketches 15 and 16 (taken from ref. Ii).

If the hypothesis of Heiskanen and Vening Meinesz had been valid, then

the curves of sketch 15 would have assumed the form of a number of

discrete blips both positive and negative not exceeding, however, the

area of the shaded square. The curves of sketch 16, on the other hand,

would have been constrained to lle within the shaded band except at a num-

ber of discrete points where it may on occasion have peaked to 20 meters
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corresponding to the center of large gravity anomalies. The satellite

data are clearly in conflict with the Heiskanen hypothesis and support

the contention of Je_freys that the departures from equilibrium of the

earth are indeed very appreciable and correspond to wide-scale undula-

tions in the geoid to something of the order of i00 meters.
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Geophysical Implfcations

How then does the earth support such marked departures from equi-

librium? Two mechanisms have been proposed: (a) they are supported by

convection currents in the earth's mantle, and (b) they are supported

by the inherent strength of the material constituting the earth's mantle.

Licht in reference 15 has inquired into the feasibility of mecha-

nism (a). By assuming a system of convection currents similar to that

depicted in sketch 17 and assigning a value of lO 22 poisses for the vis-

cosity of the material comprising the earth's mantle, he has computed

the velocity of the convection currents required to support the measured

bulges. He finds it to be 3_64 centimeters per year (corresponding to

an overturn time of 175 x l0 O years). With the velocity of the convec-

tion currents and the viscosity known_ he then computes the power which

is necessary to maintain the convection currents and finds it to be

5.8 x lO 18 ergs per second.

Flow

lines

N

S

Mantle

Sketch 17

The earth can be pictured as a gigantic heat engine in which these

convection currents are maintained by the outflow of heat from the core

to the surface. The heat coming from the core is estimated to be

8.2 x 1018 ergs per second.
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The Carnot efficiency _ is therefore:

Work done

Heat extracted from the hot body (earth's core)

•n = 5,.8 .x zo 18

8.2 x lO 18
= 70 percent

The temperature difference between the core and the surface is also known

and from this the ideal Carnot efficiency can be deduced. It was found

to be 84 percent. The actual efficiency is much too close to the ideal

efficiency to be realistic, and on these grounds the convection hypotheses

is rejected as untenable.

There is no recourse then but to assume that the departures from

equilibrium are indeed supported by the inherent strength of the earth's

mantle. Had the earth been an elastic body, the stresses within the

interior could have been evaluated in a relatively straightforward man-

ner. Thus associated with any specified surface loading of the form

anS n where Sn is a surface harmonic of degree n, the greatest stress

-difference would have been knan where Sn 2 is the value of Sn 2

averaged over the surface of the sphere and kn is approximately equal

to unity. For n = 2, this maximum stress deviation would have occurred

at the core; for n = 3, it would have occurred at a distance of 0.4 of

the earth's radius; and for the higher harmonics exceeding 3, it would

have occurred at a depth of approximately a/n where a is the earth's

radius. However, the earth is not an elastic body; the occurrence of

thrust and faults in the earth's crust layer testifies to this fact and

has led Jeffreys (ref. 3) to adopt the following alternative approach.

He has rejected the conditions of elastic deformation and retained only

the equations of stress equilibrium. There are an infinite number of

stress distributions which will suffice to support a given surface loading.

Of this infinite number of stress distributions_ one yields the minimum

value of the peak stress difference. Such a minimum value defines a

lower bound on the stress difference which must occur within the earth's

interior. Taking his own numbers for the deviation of the earth from

equilibrium which indeed, as has been pointed out earlier, are substan-

tiated qualitatively at any rate by the analysis of orbital data, Jeffrey

finds that, if the stress is supported by the entire mantle external to

the core, the strength of the material cannot be less than 1.5 × lO8 dynes

per square centimeter. If, however, it is supported wholly by the mantle

up to a depth of 0.1 of the earth's radiusj the strength cannot be less

than 3.3 × l08 dynes per square centimeter.
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MEASUBEMENT OF CERTAIN ASTRONOMICAL CONSTANTS
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The System of Astronomical Constants

The measurement of the so-called terrestrial constants which serve

to define the form and figure of the earth have been discussed in a

previous section. These constants are needed in the computation of earth

satellite orbits. In this section those additional constants which will

be needed in the computation of interplanetary and lunar trajectories

and which are involved in problems of space navigation will be discussed.

These constants, those of this section and of the previous section, con-

stitute part of the "system of astronomical constants."7 The use of the

word "system" implies an inner structure. This is provided in the pres-

ent instance by a number of theoretical relationships involving the var-

ious astronomical constants. Celestial mechanics differs from most other

sciences inasmuch as certain of its theoretical relationships are valid

to a higher degree of precision than are the observational values of the

parameters which they contain. Such being the case, it is clearly incum-

bent upon us to make the fullest possible use of these relationships in

developing a system of astronomical constants. A logical procedure would

be to choose those parameters which can be measured with the highest

precision as fundamental parameters and use the pertinent theoretical

relationships to derive the others. This appears to be the motivation

of DeSitter in reference 15. By virtue of the interlocking of these var-

ious constants, any adjustment of the value of any one of them will neces-

sitate adjustments in the others (to preserve theoretical consistency);

in short, such an adjustment will permeate the entire system and necessi-

tate complete revision of the astronomical tables. Such a task is not to

be lightly undertaken and this explains why revisions to the system of

astronomical constants are made so infrequently. The presently accepted

values were approved by the International Astronomical Union in 1898 .

There is an additional reason why internal consistency should, at

all costs, be preserved even at the expense of accepting certain inaccu-

racies in the values of certain of the parameters. Thus different inves-

tigators may base their calculations on somewhat different parameters.

If the parameters they have used are theoretically imcompatible, the

results of their investigations will be theoretically incompatible and

7There appears to be no universally accepted definition as to what

is embraced by the term "system of astronomical constants." Clemence in

reference 14 regards the system of astronomical constants as constituting

all parameters of interest in celestial mechanics apart from (a) elements

of planetary orbits, and (b) masses of planets other than those of sun,

moon, and earth.
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the making of a comparison between the separate investigations will be
materially more complicated.

The Universal Gravitational Constant (G)

The parameter which is the most fundamental in all matters pertaining
to gravitational fields is the universal gravitational constant.

Determination in laboratory units.- A number of determinations have

been made of this in the laboratory. The first apparatus for this purpose

was built by Rev. John Mitchell in the latter part of the 18th century.

It consisted of a wooden arm about 6 feet long bearing at its ends lead

balls about 2 inches in diameter. Two larger spheres about 8 inches in

diameter were brought up to the proximity of the smaller spheres (see

sketch 18) and caused the beam to rotate somewhat against the torsion of

the wire. The deflection coupled with a knowledge of the torsional

strength of the supporting wire would have enabled the forces between

the lead spheres to be evaluated. This in turn would have lead to a

determination of G. Rev. Mitchell died before he could make a deter-

mination. His apparatus fell into the hands of Cavendish who did make

careful experiments in 1797 and 1798.

Torsion wir_

Sketch 18

The use of such a bulky apparatus for purposes of making such del-

icate measurements is fraught with uncertainties resulting from distor-

tions of the apparatus, temperature differences, and air currents.

A much more compact apparatus (essentially the same in principle)

was designed by Boys in 1895. The arm was only 24 centimeters in length

suspended on an extremely fine quartz fiber and bearing at its extremities

two gold balls 5 millimeters in diameter. The attracting masses were

lead spheres l0 centimeters in diameter.
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In more recent determinations, Heyl (1930) and Heyl and Carzanowskl

(1942), instead of using spheres as the attracting masses, have used

cylinders. (Cylinders have the advantage that they can be shaped to a

higher degree of precision than can spheres. )

The currently favored value is

6.670(1 ± 0.0007) X 10-8
cm 3

gm-sec 2

Determination in terms of astronomical units.- The astronomers'

interest is primarily centered on orbital motions relative to the sun.

A set of units more suited to the astronomers' particular needs was pro-

posed by Gauss:

Unit of time: Mean solar day.

Unit of mass: Mass of the sun.

Unit of distance: SemimaJor axis of the earth's orbit.

The gravitational constant expressed in terms of these units is referred

to as the heliocentric gravitational constant and is conventionally

denoted by ks . By applying Kepler's third law to the orbital motion of

the earth-moon system,

k s --

P_m s + (me + mz)

In terms of the Gaussian astronomical units

a=l

m s = 1

Uncertainty of ks arises solely as a result of an uncertainty in

m e + mz

P (sidereal period in mean solar days) and in the ratio ms The

m e + m Z
orbital period is known with extreme precision. The mass ratio

m S

is much less accurately known; however, it does not sensitively affect

the _- lue of k s . As a result in terms of these Gaussian units, the

gra _ational constant is known very precisely indeed. More accurate

m e + mz
dete mlnations of P and have, however, been made since the

ms
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time of Causs and rather than adjust ks which permeates the entire
orbital computational procedure, it has been deemedadvantageous to
incorporate the change simply by revising the unit of length. The revi-
sions necessitate simply introduction of an appropriate scaling factor
to all lengths appearing in the end results of the orbital computations.

The current definition of the astronomical unit of length is the
meandistance of a fictitious unperturbed planet having exactly the mass
and period used by Gauss. It is hardly necessary to point out that the
difference between the Gaussian unit and the astronomical unit of length
is extremely small. Thus, according to Neweomb,the meandistance of
the earth from the sun is 1,000,000,230 astronomical units.

Interrelationship between laboratory units and astronomical units.-

By way of summary, the gravitational constant has in effect been measured

on the basis of laboratory experiments (in terms of laboratory units) and

on the basis of what might be regarded as one of nature's own experiments

(in terms of natural astronomical units). The much greater accuracy of

the determination in terms of astronomical units testifies to nature's

superior skill in setting up an experiment approximating much more closely

idealized conditions.

It has always been of interest to tie the laboratory units to the

astronomical units; however, of late, it has become a matter of practical

concern. Thus, in considering an interplanetary voyage, the initial con-

ditions will be expressed in terms of laboratory units, whereas the ter-

minal conditions (motion of the destination planet) are expressed in

astronomical units. Insofar as the conversion of units of mass is con-

cerned, this is not important in trajectory work since it is only the

ratio of masses which is significant and not the units in which the indi-

vidual masses are measured. The laboratory units of time measurement are

the same as astronomical units and the question of conversion does not

arise here. 0nly in the conversion of length measurements does an acute

problem arise. This is the problem of the determination of the solar

parallax to which some consideration will be given later.

I
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Mass of the Earth

The mass of the earth can be determined in one or the other of two

ways:

(a) By direct measurement.

(b) Indirectly by measuring accelerations induced on test bodies

moving in the gravitational field of the earth and making use of the

independently determined value of the gravitational constant.

Thus, it is possible to use either
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or

2 a3/2
P = (49)

suitably modified to allow for slight perturbational effects. Whether

equation (48) or equation (49) is used, the measurement is the same in

essence. Thus by using equation (48) accelerations in motion of two

bodies along their line of centers are measured and by using equation (49)

accelerations associated with orbital motion of one body about the other

are measured.

Although the accuracy of the indirect measurements is somewhat

superior to that of direct measurement, from the point of historical

interest a brief description of two of the more celebrated classical

attempts to measure it directly are included.

One of the earliest attempts at a direct determination of the mass

of the earth was made by the English astronomer Maskeylyne in 1772. The

method consisted of suspending a plumb bob in the proximity of a mountain

mass and noting its deflection 8.

whe re

mm

me

d

r

Horizontal pull of the mountain Gmmm/d 2!
= _-

Gmem/_ 2Vertical pull of the earth

_,2

me d 2

mass of mountain

mass of earth

distance to center of mass of mountain

radius of earth

By assuming a specific gravity of 2.5, both the mass and the location of

its center of mass of the mountain could be estimated and hence the mass

of the earth deduced.

The value obtained by Maskeylyne was considerably in error. The

error arose principally as a consequence of the condition of isostasy,

that is, that mountain masses are at least partially compensated by mass
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deficiencies under their bases. Indeed_ if he had performed his experi-

ment in the proximity of certain mountain ranges he would have found the

plumb bob repelled by rather than attracted by the mountain.

A laboratory determination of the mass of the earth was made by

Von Jolly in 1881. His apparatus consisted of a balance having two scale

pans supported from each arm. A mass m (5 kilograms) was placed in one

of the lower pans (that is, D in sketch 19) and an identical mass in

the upper pan A supported on the opposite arm. The gravitational pull

in the lower of the two masses was somewhat greater than that on the

other because of its closer proximity to the earth's center. Balance

was reestablished by adding a small weight in pan A. A large mass M

(5775.2 kilograms) was then placed beneath pan D. As a result of the

gravitational attraction of M on m the balance was again disturbed

and was reestablished by placing a very small mass m c on the upper

pan A.
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Sketch 19

The force on m c exerted by the earth must then be equal to the
force between m and M. Hence
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from which we can calculate the unknown me .

Von Jolly obtained a value of 6.15 X 1027 grams. This value is

about 3 percent higher than the currently accepted value of

5.974 ± 0.005 × 1027 grams. The reason for the rather large discrepancy

stems from the use of bulky apparatus subject as it is to distortions,

unequal temperature, and so forth, to make measurements of extreme

delicacy.

Figure of the Moon (Theoretical Considerations)

The form and size of the moon will now be considered. In the case

of the earth, the principal deviation from spherical form resulted from

the earth's rotation on its axis. In the case of the moonj the rate of

rotation is much slower (once in about 27 days) and, in addition, it

maintains essentially the same attitude relative to the earth and there

is every reason therefore to expect a sizable tidsl bulge to exist.

In the theoretical treatment of the earth's figure certain specious

reasons were advanced for believing that the earth was essentially in a

condition of hydrostatic equilibrium. The same arguments can be invoked

in the case of the moon and it is clearly of interest to investigate the

equilibrium form which would be assumed by the moon under this hypothesis.

The mathematical problem which poses itself is to determine the form

assumed by a fluid mass under the joint action of

(a) Its own gravitational field.

(b) Its rotation.

(c) The earth's attraction.

In the case of the moon, the analysis can be materially simplified by

introducing the assumption of uniform density throughout. Such an assump-

tion is Justified on the grounds of the smallness of the lunar mass (the

internal pressure nowhere attains that existing at the base of the earth's

crustal layer). The detailed analysis is presented in reference 3, where

it is shown that to a first order the moon is a triaxial ellipsoid with

its longest axis pointing toward the earth and its shortest axis coin-

ciding with its axis of rotation. The following expressions are derived

for the lengths of the three axes:
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longitudinal axis (pointed toward earth),

transverse axis,

Ii i0 me _5112ml 7

polar axis (axis of rotation),

12 m_

where

c distance between earth and moon

mean lunar radius

me mass of earth

m_ mass of moon

Once its geometrical form is established and the assumption of uniform

density is made, the moments of inertia about the principal axes of the

lunar ellipsoid can be evaluated. (See ref. 14.)

In particular, by denoting by Ill , I2_ , and I31 the moments of

inertia about the longitudinal, transverse, and polar axis, respectively,

the following relations are obtained:

I31 - Ii_
= 0.0000575

I5_ - I2Z
= o.ooooo94

12Z - Ill
= 0.0000281

I31
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The principal use of these theoretical investigations is in the

determination of the extent to which it tallies with observational data,

for in this way the validity of the hypotheses underlying the analysis

is checked. In the case of the earth_ the observational data were pro-

vided by astrogeodetic and gravimetric measurements made on the earth's

surface. As yet the capability of making similar measurements on the

lunar surface has not been developed. The observational data in the case

of the moon is provided by the perturbations in the lunar orbit and the

angular motions about its center of mass which result from the moon's

lack of sphericity.

Orbital Perturbations and Librations Resulting From

Lack of Sphericity of Gravitating Bodies

Static considerations.- Two spherically symmetric bodies placed with

their mass centers at a distance D apart attract one another with a

mlm2
force equal to G--. (See sketch 20.)

d2

v

f

Mass m I

J
FX

d

Mass m 2

F X

Sketch 20

In the event that either or both of the bodies lack spherical sym-

metry the force of interaction must be amended somewhat. Thus, suppose

the mass of body 2 is redistributed to form a spheroid (see sketch 21).
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2_ Z

a
AF Z

Sketch 21

Specifically suppose the polar mass at a is brought forward to form

the bulge at b and the polar mass at c is displaced an equal distance

to the rear to form the bulge at d. Displacement of mass from a to b

will result in an increase in gravitational pull whereas that resulting

from mass transfer to c to d results in a reduction in gravitational

pull. By virtue of the fact that the gradient of the gravity field

increases as the attracting center is approached, these two effects are

not quite equal but result in a slight net increase in overall force AF X,

In addition, since the force on b exceeds that on d there results a

net force in the upward direction AF Z and a net torque AQ about the

mass center of the oblate body in the direction indicated.

The resultant force on the spherically symmetric body acts through

the center of the mass. By applying the laws of statics it is noted that

the component of the resulting force along the line of centers is equal

to FX +AF X and the component in the vertical direction is AF z down-

wards. Moreover, since the net moment on the entire system is zero, it

follows that AQ = d AFz.

Analytic expressions for these force and moment increments can be

obtained by appealing to MacCullagh's formula which serves to define the

potential of a body of arbitrary shape at a "distant point." (See

sketch 22.)
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C

b _e rtial

a _ ellipsoid

P

Sketch 22

whe re

I

IX

Iy

IZ

m/, IX + Iy + Iz - 3I\

¢=G_- + -- J2d 3

moment of inertia about arbitrary axis QP

moment of inertia about principal axis Qa

moment of inertia about principal axis Qb

moment of inertia about principal axis Qc

spheroidal IX = Iy and
Since in the case presently under consideration the body is

I = IX sin2e + IX + Iz cos2e. Hence

(50)

Ix + Iy + Iz - 5I : 2Ix + Iz - 3(IX sin2e + Iz cos28)

- Iiz-

mI_-- 3(Iz - Ix).(c - 3) I= G - --- \os282d3
(51)

If this expression for the potential of a spheroidal body is com-

pared with the more complete expression given in section "Theory of

External Field" what is meant by the phrase at a large distance appearing
in the enunciation of MacCullagh's theorem can be seen. It is a distance



6O

sufficiently great to ensure that contributions arising from third and

higher harmonics are insignificant. If, instead of a unit mass at P

(as is implied in the definition of potential) there is a mass ml; the

mutual potential energy is actually given by

3ml(IZ- 1

Force and moment components are determined by the following

derivatives:

[d2 Iz-IX(cos2e_½)I29ml

(52)
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i_ G< "3 IZ-IX )_Fz = - _ _8 = _ ml d_ sin28

T

f

AQ = - _ = G 23--mI dB sin 2

Note that _Q = (d)(_Fz) as is demanded by conditions of statical

equilibrium.

Dynamic considerations.- First of all consider the orbital motion

of a spherically symmetric body about an oblate body. In this case the

forces which are operative on the spherical satellite are modified

slightly as a consequence of the oblateness of the attracting mass and

hence the orbit is perturbed somewhat from Keplerian form. However, the

force acting on the satellite at all times acts through the center of

mass and no angular motions are induced. Consider next the complementary

situation in which a spheroidal satellite is in orbit about a spherically

symmetric mass. In this case the oblateness of the satellite induces

changes in the force components resulting in perturbations in the orbital

motion. It also gives rise to a torque about the center of mass producing

angular motions (librations) about the center of mass. It is of interest

to compare the magnitude of these angular motions with the magnitude of the

perturbations in orbital motion. A measure of the amplitude of the libra-

tions is provided by the ratio _Q/Ma 2 where AQ is the applied torque,

M is the mass of the satellite, and a is a representative body radius.

In considering the perturbations in orbital motion it suffices to consider
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the influence of the force increment ZkZ. This condition gives rise to

a torque (R) (_Z) = Z_Q about the attracting center and operative on

the orbit as a whole. A measure of the perturbation to which the orbit

is subject as a consequence is provided by the ratio Z_Q/MR 2, where R

is the orbital radius. Hence, Libration
Perturbation in orbital motion is of

the order of _R2/_ 2). In the case of the earth-sun system this ratio

/I\

is of order of magnitude _90_000_000) _ that is, 5.05 × 108; and thus,
\ 4,000 __'

although the rocking of the equatorial plane associated with the earth's

oblateness is very significant, changes in the orbital motion are vir-

tually insensible.

With regard to the earth-moon system, because of the moon's closer

proximity, the ratio is of a smaller order of magnitude. Thus,

Librations resulting frsnmass oblateness
are of the order

Orbital perturbations resulting from mass oblateness

of \ 1,000 / that is, 62,500. Although the librations are much larger

in this instance, the orbital perturbations due to moon's oblateness are

detectable and are indeed utilized, as will be seen later, to provide a

quantitative measure of the deviation of the moon from spherical form.

By way of summary then, if the two cases which have been discussed

separately are superimposed and an oblate body orbiting about an oblate

attracting mass is considered, both the oblateness of the satellite and

of the attracting mass contribute to the orbital perturbations to which

the satellite is subject. However, insofar as the librations about the

center of mass is concerned, only the oblateness of the satellite con-
tributes here.

Motion of earth.- The llne of intersection of the earth's equatorial

plane and the plane of the ecliptic serves as a basic datum llne in celes-

tial mechanics. It pierces the celestial sphere in the equinoctial

points. If these planes maintained the same orientation in space, the

year of the seasons (from solstice to solstice) would be exactly equal

to the year determined by the heliacal rising and setting of the stars

(times when certain constellations rise and set with the sun).

Hipparchus around 125 B.C. on examining records embracing some

several hundred years noted that the solsticial (year of seasons) was

shorter than the heliacal year (sidereal year). From this he deduced

a westward migration of the equinoctial points of 56 seconds of arc per

year. The data he used were somewhat rough and his estimate was some

30 percent low. Such a migration of the equinoxes points to either a

rotation of the equatorial plane or the plane of the ecliptic or both.
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Later observations showedthat celestial latitudes of the stars were
subject only to very slight variation and the effect was principally
the result of a rotation of the equatorial plane. Newtonwas the first
to advance a qualitative explanation. Euler subsequently provided a
rigorous and elegant mathematical demonstration of it.

The reason for this precession motion is most clearly exhibited in
terms of the analogy with a spinning top. Supposethat a top is spinning
on an essentially friction-free pivot. (See sketch 23.) The gravita-
tional torque instead of causing the top to topple induces a steady pre-
cession of the axis of rotation about the vertical. (In addition, there
is a superimposedoscillatory movementof the axis, the so-called nuta-
tion. This is in the nature of a transient and can be disregarded in
the astronomical problem since such transients have had ample time to
subside.) Reverting to the earth-sun system, the earth acts as the
spinning top. The sun's attractive force on the equatorial bulge gives
rise to a torque tending to swing the bulge into the plane of the eclip-
tic. As a result, the earthWs axis of rotation precesses about the
vertical. The situation in this case is somewhatmore complex than our
top analogy to the extent that the torque is not constant_ thus, when
the sun is coincident with one or other of the equinoctial points, the
torque falls to zero. The net outcome is that the movementof the axis
assumesa sinusoidal form as depicted in sketch 24 consisting of a steady
precession Ps and a superimposed slnusoidal fluctuation of a 6-month
period. The moonitself has a similar effect and also produces a steady
precession P_ and a superimposedoscillatory motion of a biweekly
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gravity

Sketch 23
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period. By combining these results, the earth's axis is subject to a

steady motion Ps + P_ referred to as the lunisolar precesslon 8 with

certain fluctuating components which are referred to as nutations. 9

L

1

9
7
9.

Rotation of I

earth's axis I
about celestial l

Tie I

I_----6 months

Sun at equinoctial points

Sketch 24

Ps, steady precession

There is an additional effect resulting from the rotation of the

moon's orbital plane over a period of 18.6 years. Note the situation

along the llne of intersection of the equatorial plane and the ecliptic.

(See sketch 25.) At a certain epoch the moon's orbital plane is at AA

and the lunar effect is minimal. Some 9-3 years later the orbital plane

is at BB and the effect is maximized. Thus there is an additional

periodicity in the motion of the earth's axis of 18.6 years. This effect

constitutes the dominant nutational effect.

A

B Plane of

m

elliptic

Earth' s equatorial

plane

Sketch 25

8The lunlsolar precession amounts to 50_37 per year, the moon's

contribution exceeding by roughly a factor of 2 that of the sun.

9The use of the word nutation in this context differs from that

in discussion of spinning tops inasmuch that they here refer to forced

motions and not to transients.
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To complicate matters further the plane of the ecliptic is subject

to slight motion. This motion arises as a consequence of the other

planets tending to pull the earth's orbital plane into the planes of

their respective orbital motion. The effect is very complex and gives

rise to secular changes rather than periodic ones. At the present time

it is producing an eastward migration of the equinoctial points of about

O:'ll per year; this rate is itself subject to slow variation. This

migration is referred to as the planetary precession. The general pre-

cession is the result of superimposing lunisolar precession and planetary

precession and amounts to 50"26 per year. There is an additional con-

tributing factor; the solar system is itself rotating about the center

of the galaxy and completes a revolution in about 170 X 106 years. In

other words, the background of stars viewed relative to a strictly iner-

tial frame is rotating about the galactic pole at a rate of 0"74 per

lOO years. To obtain the motion of the equinoctial points relative to

an inertial system, due consideration must be given to this component

of motion and the general precession suitably amended.

Not only is the earth's orbital plane subject to secular rotation

about the vector defining the angular momentum of the entire solar sys-

tem (which serves to define the normal to the invariable plane) but

there are secular changes of its inclination, lO the line of apsides, ll

and the eccentricity. A rough qualitative plot of the latter which

serves to typify the irregular character of secular changes is presented

in sketch 26. It is of interest to note that, although the secular

changes are erratic, there are theoretical bounds between which the

values of the orbital parameters are constrained to lie. Thus in the

case of the earth's orbit, its eccentricity must fall in the range of 0

to 0.0677, and the inclination of the orbital plane relative to the

invariable plane can never exceed 5°6'0 ''. (See ref. 17. )

No mention has been made to the secular variation of the semimaJor

axis. Laplace believed he had satisfactorily demonstrated that this

particular parameter was not subject to change and hence rigorously

establishes the st_.llity of the solar system. Admittedly, Laplace's

analysis disregards_!tll dissipative terms. The solar tides will promote

changes in the earth's angular momentum about its axis which must be

compensated by a corresponding change in the angular momentum associated

with the earth's orbital motion. However, the angular momentum associated
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lOThe inclin_tion of the plane of the ecliptic to the invariable

plane is presently about l°55 '. It will diminish over the next

20,000 years to a minimum value of about 47'. Thereafter it will begin

to increase.

llLine of apsides is currently revolving eastward at a rate which,

if it were to remain constant (which it will not by reason of the secular

character of the change), would carry it around in 108,000 years.
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Sketch 26

with the earth's orbital motion is so overwhelmingly greater than the

angular momentum associated with the earth's rotation on its axes that

any changes arising in the orbital motion resulting from solar tidal

friction are quite undetectable. There exists a much more cogent reason

for doubting the validity of Laplace's analysis. This reason stems from

the fact that the series development he was using was not convergent as

he thought but divergent of a kind that is known as asymptotic. At the

moment the question remains unresolved. Since the effect is theoretically

unpredictable and observationallyundetectable, there is no point in

pursuing the matter further.

The motion of the moon.- The motion of the moon is, to a good

accuracy, summarized in Cassini's three empirical laws (see ref. 18):

i. The moon rotates uniformly about an axis which is fixed with

respect to the moon itself. The period of this rotation is identical

with the sidereal period of the moon in its orbit, namely 27.321661 days.

2. The pole of the lunar rotation z makes a constant angle (1°35 ')

with the pole of the ecliptic Z which may here be regarded as a fixed

point on the celestial sphere.

5. In consequence of the nearly uniform regression of the lunar node

on the plane of the ecliptic and the nearly constant inclination of the

lunar orbit (909 ') the pole of the moon's orbit P is known to describe

a small circle about Z in a period of 18.6 years. The arc of the great

circle zP contains also the pole Z. In other words, the planes of the

lunar orbit and the lunar equator intersect on the ecliptic, the latter

plane being intermediate between the two former.

This last-mentloned fact elicited some surprise when it was first

enunciated by Cassini. D'Alembert sought an explanation without avail.
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It engaged the attention of other mathematical giants Legendre, Laplace,

and Poisson and through their Joint efforts an explanation was finally

given. The precession of the lunar axis about the vertical is the direct

outcome of the lack of sphericity of the moon and indeed it can be used

IZ - IX (namely, 0.00062
to make a fairly definitive determination of IZ

to within an accuracy of 1 percent) in precisely the same way as the

precession of the earth's axis leads to a definitive determination of

Iz - IX

Iz

There exists another angular motion about the center of mass which

holds some interest. By virtue of the difference of the moments of

inertia about the radial and transverse axes in the plane of the lunar

orbit coupled with the circumstance that the moon's orbit about the earth

is somewhat eccentric and thus gives rise to nonuniform angular velocity,

a pendulum-type oscillation is induced in the plane of the orbit. (See

sketch 27.) Both the earth and the sun contribute to this rocking motion

and thus give rise to two terms, one having a monthly periodicity and

the other having an annual periodicity. The former falls below the

threshold of observational detection and, although the annual term (moon's

annual libration in longitude) can be detected, it amounts to only 1 mile

displacement of the center of the lunar disk (corresponding to about l"

of arc at the earth's distance). As a result of its smallness and the

difficulty of its accurate determination by virtue of the boundary irreg-

ularity of the lunar disk, it yields a relatively poor determination of

Iy - IX
, the uncertainty being a sizable fraction of the whole amount.

Iz
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Applied torques
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Sketch 27

The principal perturbations in the orbital motion itself, resulting

_irectly from the moon's oblateness, are three in number:
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(i) Motion of lunar node.

(2) Motion of lunar perigee.

(3) Monthly variation in the moon latitude.

The third effect is inextricably entangled with the obliquity of

•the ecliptic. This effect can be seen by supposing the moon to be moving

in the earth's equatorial plane; its latitude would be subject to a

monthly variation by virtue of the obliquity of the ecliptic. Unfortu-

nately, the obliquity of the ecliptic (nor the time variations to which

it is subject) is not known with sufficient precision to permit an accu-

rate determination of the monthly variation in the moon's latitude. On

these grounds Jeffreys (ref. 3) suggests that it should not be employed

in arriving at estimates of the moon's dynamical ellipticities.

Consider next the contribution of the oblateness of the earth and

moon to the motion of the lunar node and perigee. The most dominant

contribution to the rotation of node and perigee is to be attributed to

the sun (69,672"04 per year and 146,426"92 per year, respectively).

An estimate of the magnitude of the contribution resulting from the

moon's oblateness will now be made. Elsewhere, it is shown that libra-

tional motion of the lunar axis about the vertical should be some

62,500 times the orbital perturbation. The librational motion of the

polar axis is such as to result in a complete circuit in 18.6 years

(that is, 69,672"04 per year). On this basis an orbital perturbation

of the order of seconds of arc per year may be expected and this is

indeed what is observed. These numbers serve to illustrate the diffi-

culty of the determination of the lunar dynamical ellipticities involving

the sorting out a contribution which amounts to only one part in several

tens of thousandths of the total and it testifies to the extreme precision

of astronomical measurements that analysis of these perturbations provides

useful supplementary information on the dynamical ellipticities of the

moon.

The best available values of the dynamical ellipticities to date

are

IZ - IX

IZ
= O. 0006269 + 0. 0000027

Iy- IX

IZ

= O.000118 + O.000057
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If uniformity of density is assumed, these values imply that the lunar

axis pointing toward the earth is about 1/4 mile longer than the trans-

verse equatorial axis and this in turn exceeds the polar axis by about

1 mile (_1.6093 kin).

Comparison of Theoretical and Observational Values

of the Ellipticities of Moon

Comparing the observational values given above with those given

in section "Figure of the Moon" which have been derived theoretically

discloses a considerable discrepancy. The assumption underlying the

theoretical treatment which is most suspect is that relating to hydro-

static equilibrium. If the difference is attributed to this condition,
the internal stresses associated with such marked departures from hydro-

static condition will demand material of at least the strength of brick

to support them. This in turn leads us to question the validity of

assuming hydrostatic equilibrium in the case of the earth. On this point

there is independent evidence from the analysis of Vanguard I orbital

data and other artificial satellites that the earth does indeed exhibit

marked departures from hydrostatic equilibrium.
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Solar Parallax

The need to determine the earth's distance from the sun in terms of

laboratory units has already been stressed. One way in which this can

be done in principle would be to make simultaneous observations of the

center of the sun's disk from two distant points P and Q on the earth's

surface. (See sketch 28.) A simple trigonometric calculation would then

give the distance to the sun in terms of earth radii and since the earth's

radius is known in laboratory units to a high precision this is tantamount

to a measure of the distance in laboratoryunits. In other words this

Earth

Sketch 28
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calculation would provide a direct measure of the sun's mean equatorial

horizontal parallax 12 (solar parallax for short) defined in sketch 29.
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Observer at 0 views sun on horizon

oJ

Equatorial disk of earth

-_ Jc

Solar parallax, _e

Sketch 29

The solar parallax (_e) is so small (about 8 seconds of arc) that _hls

trigonometric procedure would not lead to a very accurate determination.

The accuracy can, of course, be materially improved by triangulations

on a body which is closer to the earth and the distance of which is known

accurately in astronomical units. Such a favorable opportunityl3 was

provided by the asteroid Eros in 1931 when it came within 13,000,000 miles

of the earth. Use of Eros had the additional merit that Eros is so small

that to all intents and purposes it was a point source of light_ thus,

the uncertainty in determining the center of an illuminated disk of finite

dimensions was eliminated. Based on observations made on Eros during

this close encounter, Spencer-Jones obtained a value of the solar paral-

lax of 8_790 ± 0_001.

Rabe in 1950 made a dynamical determination of the solar parallax.

As a preliminary to describing the method used by Rabe, it will be neces-

sary to derive a certain theoretical relationship.

If Kepler's third law is applied to the motion of the earth-moon

system about the sun,

4_2R 3 = G(m s +me + m_)Pe 2 (53)

12This parallax was meau in the sense that the earth is at its mean

distance from the sun, equatorial in the sense that the observation is

made from a point on the equator, and horizontal in the sense that the

sun is viewed when located on the horizon.

13Even more favorable opportunities will present themselves in the

next l0 years. Thus: 1566 Icarus within 4,000,000 miles in 1968;

1620 Geographos within 4,000,000 miles in 1969.
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where

R

Pe

G

ms

me

m_

mean orbital distance

sidereal year

universal gravitational constant

mass of sun

mass of earth

mass of moon

If Kepler's third law is applied to orbital motion of moon about the

earth,

where

P_

Equations

4_213 = G(m e + mz)P_ 2

mean lunar distance

sidereal month

(53) and (54) may be rewritten in the form

G(m s + me + m_) : 4_ 2 R-_-3

(54)
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Hence,

However,

_3
G(m e + m_) = 4_ 2 --

p2

Gms= (55)

gq= +e-_
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or

Gme =

2
gqrq

1 + 6 - 3---_

2

Dividing equation (55) by equation (56) yields

m S

me 3)G4_2R5 (i + c -

gqr q2 Pe 2 R 5 PE2/

Assume that the solar parallax in seconds is

rq i" rq--= _ sin or R =
E _ sin i"

Therefore,

ms _3 = 4_2rq i + c - _ _

m e + m_ (sin l")3Pe 2 1 + _ R 3 p 2/

= 2.26444 x lO 8

(56)

(57)

to a high accuracy where _ is the ratio of the moon's mass to earth's

mass.

In the light of this relationship it is seen that a determination

m s
of the ratio leads directly to a determination of comparable

m e +m_

accuracy of the solar parallax and, of course, vlee versa. This rela-

tionship provides the basis of a dynamical determination of the solar

parallax. Rabe analyzed the perturbations in the orbit of Eros over the

interval 1926 to 1945 which embraces its close encounter with the earth-

moon system. From his analysis he was able to deduce a value of the mass

ratio ms and this in turn led to a value of the solar parallax
m e +m_

of 8_798 ± OUOO04. It is to be noted _hat the difference between the

values obtained by Spencer-Jones trigonometrically and that obtained

dynamically by Rabe exceeds the probable error associated with either
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determination. The disparity remains unexplained. 14 To compoundthe
confusion Newcomb,toward the close of the last century, calculated the

msvalue of from the perturbation of the orbit of Venus, specifl-me +m l
cally the rotation of its orbital node, resulting from the attraction
of the earth-moon system. This procedure led to a value of solar par-
allax of 8_'759± 0_010 which is in disagreement with all other determi-
nations. Discovery of the source of this anomaly in the motion of Venus
remains an outstanding challenge to those working in the field of dynam-
ical astronomy.

There are, of course, a numberof other techniques for determining
the solar parallax. One is based on an examination of the parallactic
inequality of the lunar motion. This condition arises as a consequence
of the sun being at a finite distance (hence, the nameparallactic
inequality). Thus the solar perturbation of the lunar motion is more
pronounced whenthe moonis in conjunction than when it is in opposition.
Such an effect clearly depends upon the relative distances of the moon
from the earth and the earth from the sun and can be used for determining
the latter.

Of these various determinations the one which is currently favored
is that of Babe. There is every reason to expect, however, that within
the next few years more precise determinations of the solar parallax will
be made. Onetechnique which offers promise is the use of an artificial
probe fitted with a transponder. Oncethe probe's orbit has been defini-
tively established in terms of astronomical units, a radar pulse is beamed
to it, on receipt of which it immediately responds by emitting a signal
back to earth. The total elapsed time multiplied by the velocity of light
divided by 2 will provide an accurate measureof the distance in labora-
toryunits.

Onesource of uncertainty which may be raised by the reader is that
space is not a perfect vacuumbut is filled with charged particles which
may serve to modify the velocity of an electromagnetic wave. Although
the point is valid in principle, it is not a problem of practical concern.
Thus Herrick (ref. 19) has estimated the error resulting from this cause
to be less than the uncertainty of the velocity of light in a vacuum.
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14The trigonometric value is, of course, influenced by the value

assigned to the earth's oblateness. Within recent months, on the basis

of analyses of orbital perturbations of artificial satellites, there has

been a major revision in the oblateness factor. Instead of helping to

reconcile the two measurements, it results in an even greater disparity.
(See ref. 20.)
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Since this paper was written, more accurate determinations of the solar

parallax has been made by making radar measurements of the distance of

Venus. These more recent and more accurate determinations are in good

agreement with Rabe's value.

A ground-based measurement of potentially considerable accuracy has

been proposed by Brouwer and Lilley. (See ref. 21.) It consists simply

of comparing Doppler shifts of the 21-centimeter hydrogen line emitted by

a specific interstellar cloud at 6-month intervals. This would lead to

a very accurate determination of the earth's orbital velocity. (See

also ref. 19.)

Lunar Parallax

The moon's mean equatorial horizontal parallax (lunar parallax) can

be obtained trigonometrically or dynamically. The best trigonometric

determination is given in reference 2 as

3 f, + p,)sin _ = 0.016592278 1 +
(58)

where f' represents the uncertainty in the earth's oblateness (specifi-

cally the deviation of the true value from the adopted value 15 of 1/297)

and p' is the inherent inaccuracy associated with the observational

technique which is estimated to be ±18 × l0 -6.

The dynamic determination is based on the use of the formulas

4_27,3 : G(me + mz)Pe2

and

Dividing one by the other yields the relation

4_2rq 3Krq3 1 + ¢ -
sin3_ = _ =

_3 gqPe 2 1 +

l_The currently favored value of the earth's oblateness obtained

from analysis of motions of artificial satellites is 1/298.3 with an

uncertainty which is extremely small.
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_d leads to the expression given in reference 2

i 1 g, 2 f, 1 _,)sin _ = 0.016592715 + ½ a' - _ + _ - (59)

where

a ! deviation of equatorial radius from adopted value of

6,378,270 meters (represented by a factor ±10 X lO-6)"

g' deviation of equatorial gravity from adopted value of

milligals (represented by a factor ±3 X l0 -6)"978,056.8

f' deviation of earth's oblateness from adopted value of 1/297

(represented by a factor +4 x l0 -6)

deviation of lunar-earth mass ratio (suitably modified to

embrace perturbational effects) from adopted value of

1/81.375 (represented by a factor ±4 x l0-6)

By adopting these uncertainties as given in reference 2, it is seen

that dynamical determination is a more definitive one than is the trig-

onometric determination.

L

1

9
7
9

Ratio of Lunar Mass to Earth's Mass

The precession and nutation 16 of the earth's axis are both dependent

on the earth's oblateness and the lunar mass; thus, the equations for the

determination of these two unknowns are provided.

A more accurate estimate of the lunar mass, however, can be obtained

in the following way. The earth and moon rotate about their Joint center

of mass which is displaced some 5,000 kilometers from the earth's center.

By virtue of this rotational motion the sun when observed from the earth

appears to undergo a slight oscillatory motion with a monthly period.

This motion is referred to as the "lunar inequality in the sun's longi-

tude." The amplitude is small (about 6_45), and does not permit a very

precise measurement. By sighting on an object closer to the earth, the

to-and-fro motion is amplified and a more accurate determination can be

made. Use of the observational data obtained on Eros during its close

encounter of 1931 yielded a more accurate evaluation of the lunar ine-

quality in sun's longitude.

16Reference is made here to the principal nutational component of

period 18.6 years.



77

m_

A
W

L
Joint center of mass me

_ •

L

I

T Note in sketch 30 that

Sketch 30

(me + ml)_ = mzl

Lunar inequality

m I
N=

me + ml

L in the sun's longitude is thus

m I

=me +ml R

m I rq_
m

me + m_ rq/_

Ks

i+_

Depending on whether the value for the solar parallax of Spencer-

Jones or of Rabe is used, values of _ of 8.127 ± 0.027 or

81.377 ± 0.026 are obtained. Since Rabe's value is believed to be the

more accurate, it is the latter value which is currently favored.

RELATIVISTIC CONSIDERATIONS

There are two reasons for introducing relativity into a discussion

of gravitational fields:
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(a) It provides a more logically consistent picture of the nature

of gravitation.

(b) Artificial satellites can be used to provide checks on both the

special and general theories of relativity.

In the pedestrian approach adopted in the present text our interest

lies primarily in the second reason. However, it was thought to be

desirable to give brief r_sum_s of both the special and general theories

of relativity. In this regard considerable liberties have been taken

with the theory, if by so doing, the concepts involved were rendered more

readily assimilable One such liberty is in our interpretation of Invar-
lance of interval x2 + y2 + z2 _ c2t 2 in different coordinate systems.

The assumption is made that this inVariance implies that the coordinate

systems are orthogonally related (as indeed they would be if the terms

were all positive). Actually, they are related by a hyperbolic Minkowski

transformation.
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Special Theory of Relativity (Enunciated by Einstein in 1905)

Consider two observers 0 and 0'. (See sketch 31.) O' is moving

past 0 with uniform speed V. At the instant of passing 0 initiates

a light pulse. After the elapse of time t the light pulse will have

advanced a distance ct relative to O. What is O's estimate of the

distance? Classical theory would indicate it to be (c - v)t, experiment
shows it to be ct.

Stationary

observer ._
-Or'

l
Moving

observer

I

Time = 0

Time = t

Sketch 31
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To put the matter a little more formally, after the elapse of time t

the light pulse is spread over a closed surface. The equation of the

surface relative to 0 is x 2 + _ + z2 = c2t 2 and relative to O'

x,2 + y,2 + z,2 = c2t,2; that ±sj

Is

x2 + y2 + z2 _ c2t 2 = x,2 + y,2 + z,2 _ c2t,2 (60)

It is known, however 3 that if in two dimensions

x2 + y2 = x,2 + y,2 (61)

then xy and x'y' define two orthogonal reference frames rotated

through some angle with respect to one another. If the liberty of dis-

regarding the sign differences in equations (60) and (61) is permitted,

then equation (60) tells us that the reference frames of 0 and O'

differ only to the extent that they are rotated relative to one another.

To simplify the discussion as far as possible, only one space dimension
and one time dimension will be considered. The reference frames of the

two observers assume the form shown in sketch 32.

t !

0

oxt reference frame of 0

0x't' reference frame of O'

t E2
t'

Temporal _[

v _ x

Spatial sep (0)

Sketch 32

To observer O' events E1 and E2 both occur at t = O, that is,

"Now." Observer O, on the other hand, informs us that these events

happened, respectively, at times tI and t2. Simultaneity is thus a
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fictitious concept contrary to our intuitive notions. This is the con-

verse concept to that introduced by Newton; to wit, it is impossible

to detect a state of uniform motion, that is, the same place at two

different times. The latter tells us, "It is impossible to determine

the same time at two different places." It is curious that one idea is

intuitively acceptable and the other is not.

In sketch 32, note that the spatial and temporal separations of the

events are assigned different measures by each of our two observers. It

can be expressed equivalently by stating that measuring scales appear to

contract and clocks slow down when they are set into motion. This brings

us to the so-called twin paradox. It may be described briefly as follows.

Consider two twins, one climbs into his rocket ship, blasts off, and goes

hurtling off to some distant part of the universe. There he applies his

retrothrust, reverses his direction, and comes hurtling back. The ques-

tion arises as to whether his twin brother who stayed behind has aged

relative to himself. There are some who regard such a belief as almost

heretical. They adopt the same standpoint as did the inquisitors with

regard to the teachings of Copernicus. They contend that the knowledge

of biology is not sufficient to discuss the relative aging of living

organisms. This difficulty can be circumvented by using identical clocks

instead of identical twins. But it might be argued that when the clocks

are in uniform motion each will appear to the other to be running slow.

This is true so long as our observers are in relative motion. However,

the two observers are not wholly equivalent. It is the traveller who

experiences acceleration at blast off, at the terminal point, and at the

completion of his Journey and not his brother. Glancing at sketch 33

oxt is the reference frame of our stay at home observer 0TR is the

space voyager's path. Bear in mind that in uniform motion our "Now" lines
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_Vow /_a2te_

_et:° th:us _

T_
tp

._o_' It _e

_oo _e_f°

Space traveler's

world track

x

Explanation of twin paradox

Sketch 33
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are slewed around. Thus, Just prior to reaching T our space traveler's

"Now" llne runs from T to P, and it will be his belief that the earth

clock is reading tp. The instant after firing his retrorocket his
velocity has changed and his "Now" line runs from T to Q and the

earth clock seemingly is reading tQ. Thus in the instant of applica-

tion of retrorocket the earth clock has advanced from tp to tQ. This

latter adjustment more than compensates for the slow running of the earth

clock during the outward and return Journeys and accounts for the rela-

tive aging of his twin brother during his absence.

Outline of General Theory of Relativity

The special theory achieved a spectacular unification in both the

fields of dynamics and electrodynamlcs. It did, however, muddy the waters

in certain respects, partlcularlywlth reference to the law of gravita-

GMIM 2
tion F = --. This law is not invariant under the Lorentz transforma-

r2

tion which describes the transition from one inertial frame to another.

Thus gravitational phenomena will differ as one passes from one inertial

frame to another and these differences could be utilized to distinguish

one state of uniform motion from another. (Not only Einstein but Newton

himself would have objected to this.) Moreover, what meaning can be

assigned to r, that is, by whose measuring scale is it to be measured?

Einstein circumvented this impasse in a very ingenious way. The following

analogy was given by Eddington (ref. 22). Suppose that the belief in a

flat earth had persisted down to the present day. A Mercator's chart

would then have been regarded as giving an accurate description of the

disposition of objects on the earth's surface. If the map were centered

on the United States of America, then no serious disparities would have

arisen with reference to local Journeys, that is, Journeys within the

confines of the United States. On the other hand, travellers to distant

parts of the earth would have noticed that they were able to cover appar-

ently great distances with little expenditure of effort. The scientists

would doubtless have explained the phenomenon as the result of the action

of a mysterious force operative in distant parts of the earth. The sit-

uation with regard to gravity is very similar and just as our fictional

force owes its existence to our attempting to force a spherical surface

into a flat surface, so gravity owes its existence to our forcing what

is in reality a curved space time into a flat space time. The presence

of matter puts an indentation or rather a furrow in space time extending

along its world track. (See sketch 54.) If a particle were projected

along the furrow with a velocity which is not too large, it will clearly

oscillate from one side to another in the manner depicted. Since the

observers are moving in the time dimension, the particle will appear to

describe closed ellipses corresponding to the empirical law introduced

by Newton. The mind of the "practical" man is apt to rebel at the concept
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World track of a mass particle

/

l
Furrow in space time continuum due to

presence of a gravitating mass

X

Sketch 34

of curved space time. However, it is to be remembered that Gauss, one

of the greatest and yet one of the most practical minded of mathematicians

of all time, was not convinced of the flatness of space. Indeed, he pro-

posed an experinmnt whereby the issue might be decided. He proposed to

light three bonfires on the tops of three distant mountains, triangulate,
and determine whether the sum of the three angles equalled 180 °. The

experiment was never carried out nor would it have yielded any measurable

deviation if it had been. You might say it is one thing to admit the

possibility of curved space time and quite another to demonstrate its

actuality. What proof have we that space time is indeed curved? There

have been three deductions of general theory which have been subject to

experimental confirmation:

(a) Precession of the perihelion of Mercury.

(b) Deflection of light rays passing close to the sun.

(c) Red shift in solar spectral lines.

With regard to (a) the orbit of Mercury was subject to an unaccountable

rotation amounting to 43 seconds of arc per 100 years (the rotation

occurring in the direction of the satelllte's motion). General relativity
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explained this discrepancy almost exactly, and thus provided a very

excellent quantitative check on the theory. The check provided by (b)

is somewhat less definitive. The consensus appears to be that a statis-

tical average of measurements agrees with Einstein's prediction to within

±9 percent. The check (c) is of even more dubious nature and is more

qualitative rather than quantitative. Admitting the possibility that

the agreement in relation to the single check (a) could be fortuitous,

it is clearly highly desirable that further checks be provided.

L

1

9
7
9

Checks on Theory of Relativity

How are further checks to be made? The curvature of space can be

detected in the same way as that for a surface. Thus, draw a circle and

measure both its circumference and its radius and form the ratio; if the

space be curved, the ratio will deviate somewhat from 2_. Einstein's

formulas being accepted at their face value, if the circumference of the

sun and its radius are measured, then the ratio would deviate from 2_

in about the sixth place of decimals. If the same experiment were per-

formed with reference to the earth, the disparity would appear in about

the tenth decimal place. To put it another way, if the earth is assumed

to be truly spherical in form and its circumference were measured and

its radius deduced by dividing by 2_, the result would differ from the

true radius (as determined by direct measurement) by about 9 millimeters.

Thus, insofar as spatial distortion is concerned, the effect is very

slight.

Not only can the distortion of space time be detected by using

measuring scales but also by using clocks. Thus, if (see sketch 39)

a gravitating mass exists at 0 and if a clock is placed at infinity,

the clock at A relative to the clock at infinity appears to be running

tA

slow. The relation expressing the relative rates is t-_ = 1 + UA.

tA

Clock a_t

Gravitating
mass

A

t
oo

@
Clock at

Sketch 55
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The latter term is the potential energy associated with point A relative

to infinity (hence it is negative) nondlmensionalized by dividing through

by c2. To be a little more specific, consider the earth as the gravi-

tating mass and a satellite orbiting about it. (See sketch 36.)

Sketch 36

Clock at
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Relative to the observer at infinity the clock in the satellite is

running slow -

(a) By virtue of its being in a gravitating field

(b) By virtue of its motion

dts
-- : 1 + Us - Ts (62)
dt_

A clock on the earth's surface also appears to be running slow relative

to the observer at infinity. In this instance the effects of motion

resulting from the earth's rotation are quite negligible. Hence

dte
-- = ,I+ ue (63)
dt_

Bearing in mind that U and T are extremely small and dividing equa-
tion (63) by equation (62) an expression relating the reading of the

satelllte's clock to that of the clock located on earth's surface is

obtained.

dt s
-- = 1 - Ue + U s - Ts (64)
dte
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Relative rates of time keeping are a function of orbit parameters and

location of the satellite within its orbit.
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dts = F(a,e, 8) (65)
dte

If equation (64) is integrated over a complete revolutionj theresult

is found to be solely a function of semimaJor axis a.

Periodic time as estimated by satellite's clock

Periodic time as estimated by earthbound clock
= l + (66)

c2_ 2 c2a

The results are plotted in sketch 37.

Time Dilation of Satellite's Clock As a Function of

SemimaJor Axis of Geocentric Orbit

/
t s - te /

t e

-3 ---

0 I0, 000 20, 000 30, 000 _0, 000

SemimaJor axis, km

Sketch 37

Note that for very tight orbits (orbits hugging close to the earth's

surface) the satellite's clock appears to an earth observer to be running

slow. For large orbits the satellite clock appears to be running fast.

The crossover point corresponds to a semimaJor axis of 9,540 kilometers

(that is, in the case of a circular orbi_ this point corresponds to a

height above the earth's surface of 3, 170 kilometers or approximately

2,000 miles). Note also the magnitude of the disparity being of the
order of one part in l0 lO.
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Whenever atomic clocks are developed to the extent that it is pos-

sible to keep constant tally on their tlmekeeping as they pursue their

paths in the orbit (rather than rely on cumulative effects over a large

number of complete orbits) then a sinusoldal variation will be detected,

the amplitude of the variation being a function of eccentricity. In

sketch 38 the variation in timekeeping from point to point of the satel-

llte's orbit has been plotted. _ne orbit in question has a semimaJor

axis of 20,000 kilometers and an eccentricity of 0.6. In this instance

in the neighborhood of perigee it is running slow and at apogee it is

running fast. On the average (defined by the horizontal line), it is

running fast. Note that the average rate does not correspond to the

arithmetic mean but lies appreciably closer to the time rate at apogee.

This is the result of the satellite moving slower at apogee and hence

spending most of its time in this neighborhood.

Relative rates of timekeeping as a function of position in orbit

Sem_maJor axis a = 20,000 km

Eccentricity e = 0.6

Mean rate of timekeeping of satelllte's

clock relative to earth clock

°l'_ • 2

0

-2

-4

6 x IO -l°j

4

\
\

/
/

0 _o 8o 12o

z k

160 200 240 280 320 360

Angular displacement from perigee

Sketch 38

In addition to purely kinematical tests of the kind Just described,
other checks can be provided. One such is associated with the advance

of the perigee point (similar to the effect detected in orbit of Mercury).

In the neighborhood of spherically symmetric gravitating bodies the orbit

does not quite close on itself. (See sketch 59.) The perigee advances

by a small amount 8_ during each revolution in the direction of the

satellite's motion as given by the formula
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Relativistic precession of perigee point of earth satellites
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Sketch 39

: (67)
c2a(1- e 2)

whe re

G universal gravitational constant

m e mass of earth

velocity of light

semimaJor axis of orbit

eccentricity of orbit

The advance in the perigee point expressed in seconds of arc per year

is plotted against semimaJor axis for various values of orbit eccen-

tricities. By virtue of the smallness of the orbit the effect can be

made as large as 15 to 20 seconds of arc per year (compared with

43 seconds advance per lO0 years as displayed by Mercury). The diffi-

culties associated with carrying out such an experiment should not be

underrated. Thus, as a result of the oblateness of the earth and
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deviations from homogeneity in its internal structure, the orbit is

appreciably perturbed:

(a) There is a rotation of the plane containing the orbit, and

(b) There is an advance of the perigee point within the plane of

its rotation.

(Both of these effects may amount to several degrees per day.) It is

the latter effect which is inextricably entangled with the relativistic

effect and, since it can amount to several hundred degrees per year, then

to detect the 20 seconds of arc, the potential associated with earth will

need to be known to extreme precision. (It may well be that continual

changes in its internal atructure may suffice to mask the effect com-

pletely.) A further check proposed by Ginzburg (ref. 23) is associated

with the relativistic perturbation to the satellite's orbit resulting

from the earth's rotation. To gain some insight into the nature of this

effect, let us consider an electromagnetic analogy. Prior to Max_ell's

derivation of electromagnetic field equations, electrical phenomena were

ele 2

assumed to obey the universal Coulombic law F = c r--_- and electrical

disturbances were assumed to be propagated with infinite speed_ the

similarity with gravitation is striking. Thus, prior to Einstein's

derivation of gravitational field equations, gravitational phenomena
mlm 2

were assumed to obey the universal Ne_tonian law F = c r--_- and gravi-

tational disturbances were assumed to be propagated with infinite speed.

It is generally agreed that gravitational effects in common with electro-

magnetic effects are propagated with the speed of light.

Consider now a charged particle moving in the proximity of a charged

sphere. If the charged sphere is set into rotation_ it will set up a

magnetic field which will interact with that of the charged particle and

its motion will as a consequence be modified. If relativity is to be

believed, a similar effect will manifest itself in the case of a particle

moving in the neighborhood of a gravitating body_ thus, even though the

body be uniform and spherical, its rotation will modify to a slight

extent the motion of the particle in question. In this instance, the

regression of the perigee point is given by the formula

8 G_2Gme

= 5 c2a3/2(i- e2)3/2 (68)
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where

rotational speed of earth

m

r earth's mean radius

A plot of Zko as a function of a and e is given in sketch 40. Note

that the most favorable choice of orbit parameters yields only an effect

of order of 0.1 second of arc per year. (It is interesting to note that

in the case of Mercury the effect only amounts to O. O1 second of arc per

lO0 years.)

Relativistic recession of perigee point due to earth's rotation

i0- i __

51
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, \ .
\

' radius e
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0 5 lO 15 20 25 30 35 40 × lO5

SemimaJor axis, km

Sketch 40

Sketches 41 and 42 differ from sketches 59 and 40 only to the extent

that the ordinate defines the product of eccentricity and perigee move-

ment. It is this parameter which provides a reasonably accurate measure

of the ease of detection of the relativistic effects in question. Thus

it is to be noted that the orbit which most sensitively exhibits these

relativistic effects and which therefore recommends itself for their

detection and measurement has a semimaJor axis of lO, O00 kilometers and

an eccentricity 0.35.
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In addition to these there are other experiments which could be

made. Thus, if a rapidly rotating flywheel is placed aboard a space

ship and a particle is placed in its proximity both are in a condition

of free fall. However, they will slowly come together under their mutual

gravitational attraction. Relativity tells us, howeverj that instead of

proceeding more or less directly toward the center of mass of the flywheel

the particle will tend to be dragged around by the flywheel. (See

sketch 43.)

P

Newtonian path of particle

released from P

\

Relativistic path of / \

particle released from P \ _ R

Sketch 43

Current Status of the Theory of Relativity

There is a popular belief that insofar as its dynamical aspects

are concerned the theory is complete and all that is needed is experi-

mental verification of the basic laws. Nothing could be further from

the truth. Two dynamical problems are currently giving rise to con-

siderable theoretical research.

(i) The two-body and many-body problem.

(2) Gravitational waves.
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Two-body problem.- The status of the two-body problem in relativity

theory is similar to that of the three-body problem in classical mechan-

ics. Seemingly, the source of the trouble is the following. In his

classic paper of 1915, Einstein gave his law of gravitation G_v = 0

replacing law _-_l_2_and his law of motion of mass par-
Newton's F

r2 /

d2x_ dx dx v
tlcles -- + _v,_)ds- _ d-_ = 0 (replacing Newton's law F = me).

ds 2

This equation has to be satisfied at the location of the particle. In

the mathematical equation the particle is regarded as a mass point (that

is, an infinite singularity) and the terms appearing in the equation are

not even defined. This situation is one which arises in classical field

theory. By virtue, however, of the linearity of the field equations it

is permissible to disregard the self-fleld of the particle and the deriv-

atives can be ts_ken as those associated with the field which would exist

if the particle were to be removed. As a result of the nonlinearity of

the gravitational field equations, this expedient is no longer open to

us. In a paper published in 1957, Einstein, Infeld, and Hoffmann devised

an iteration technique which could be applied to the two-body and many-

body problems. As so often happens in applying iteration procedures to

the solution of complex sets of nonlinear equations, it is difficult to

know what the end result is. Thus, by way of example, the earliest

solution contained so-called radiation terms. These were subsequently

found to be fictitious, that is, they could be transformed away by

switching to another reference.

Gravitational waves.- One thing seems plain if gravitational waves

do exist, they are going to be troublesome to detect. Compare the detec-

tion of electromagnetic waves with those of gravity waves. In the case

of the electromagnetic field a uniform gradient of potential can be dis-

cerned by placing a charged and uncharged particle in the field - one

remains stationary, the other is set into motion. An electromagnetic

field of the form of a ripple must manifest itself as the second time

derivative of the potential. In the case of gravity waves there exists

no counterpart to the uncharged particle; thus, in order to detect a

gravity field at all, recourse must be made to a second derivative of

the potential and in order to detect a wave in a gravity field it is

necessary, in effect, to measure the third derivative of the potential.

There is a conceptual difficulty also associated with gravity waves.

Thus, a wave is usually pictured as a ripple superimposed on a steady

motion. The nonlinearity of the field equations invalidates such a super-

position procedure in the present instance. Reverting to the two-body

problem, appeal to the electromagnetic analog_ would lead us to believe

that, if two bodies are gyrating about one another, they will constantly
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lose energy in the form of gravity waves and, as a result, come together

and coalesce. As mentioned previously, there is no unanimity as to

whether this does happen. It is of interest to note the magnitude of
the effects under discussion. Thus, according to reference 24 for the

two bodies pursuing circular paths about one another, the rate at which

energy is lost in the form of gravity waves is given by the equation

32G/mlm2 12r4_6
d_ =- 7\ml + m2/

(69)

where

G universal gravitational constant

ml, m2 masses of two bodies

r distance between bodies

69 angular speed of rotation

As a result of this loss of energy, the distance between the masses

constantly diminishes and is given by

dr = _ 64G3mlm2 (ml + m2)

dt 5c5r 3

(70)

If these equations are applied to the earth-sun system, the system

appears to be losing energy at the rate of lOlO ergs per second and the

resulting diminution in distance between the earth and the sun is of the

order of 0.3 millimeter in 1,O00 million yearsl In equation (69) note

that e appears to the sixth power. Can the effect be made sufficiently

sizeable to be measureable by spinning at very high rates of rotation?

In this connection note (ref. 25) that the Air Force was contemplating

making an experiment in which they rotate a flywheel (4,000-pound mass)

at lO0,OO0 revolutions per minute and attempt to measure the rate at

which the flywheel loses energy through the emission of gravitational
waves.

_-.32__ ax%6
dt 5c5

(71)
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By inserting the figures quoted the rate of loss of energy is found to

be about 4.054 × lO-14 ergs per second.

CONCLUDINGR_W32d<_

Much of the data presented in this paper pertaining to the figure

of the earth, its gravitational field, and other astronomical constants

has been acquired by painstaking investigations, both experimental and

theoretical, extending over a long period of time. Nevertheless, by

virtue of the inherent inaccuracies in the data pertaining to the earth

and even greater uncertainties involved in converting from astronomical

to laboratory units such data doesnot provide a really adequate basis

for the "precision" computation of satellite orbits and the trajectories

of space probes. Within recent years application of newer techniques

has improved the situation somewhat. Thus, observation of the perturba-

tions to which earth satellites are subject has thrown a great deal of

light on the fine structure of the earth's gravitational field, and

presumably, once satellites can be established around the moon and other

planetary bodies, equally valuable information can be obtained about

them. Also 3 with the development of radar techniques to the point that

discernible reflection signals can be obtained from Venus, it seems that

really accurate evaluation of the astronomical unit in terms of kilo-

meters will be shortly forthcoming. Not only will such data fill the

practical need already alluded to but has intrinsic scientific interest.

For example, knowledge of the fine structure of the terrestrial and lunar

gravltational fields will throw light on the internal structure of these

bodies which, in turn, has bearing on their manner of origin. Continued

application of these techniques will clearly yield data of great value.

The relativistic effects lie on the threshold of observationj hence,

their omission in trajectory computations can scarcely be said to be a

matter of practical concern. However, the advent of satellites does

provide a potential capability of providing checks on the general theory

of relativity by making experiments under idealized conditions which can-

not be duplicated in earthbound laboratories.
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Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., March 23, 1962.
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APPENDIX

SPHERICAL HARMONICS
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It has been our aim throughout to keep the text as descriptive as

possible and to deemphasize the mathematical aspects of the subject.

However, from place to place some mathematics has intruded_ thus, in

considering the gravitational field of the earth, one could not avoid

the introduction of the notation of spherical harmonics. For those

readers who are unfamiliar with harmonic theory, this appendix has been

included to provide an introduction to some of the ideas and concepts

which underlie this mathematical technique. An attempt has been made

to develop the theory by plausible argument rather than by rigorous

reasoning. Those readers preferring the latter approach are referred

to oneof the more conventional mathematical texts. The following

symbolsare used in this appendix.

_#mjn direction cosines

Pn = Pn (0) zonal harmonics (Legendre functions of the first kind of

degree n)

pn (n) sectorial harmonics

pn (m) tesseral harmonics

r,e,_ polar coordinates of a point

Sn rational integral spherical harmonics of degree n

V denotes general harmonic function

x,y_z Cartesian coordinates of a point

_ COS e

General Considerations

Some definitions and some elementary theorems are presented.

Any function satisfying Laplace's equation _2V = 0 is said to

be a harmonic function. In general, a solution of Laplace's equation

is wholly lacking in periodicity and one may question therefore the
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appropriateness of attaching the name harmonic to such a solution.17

A measure of justification is provided by the following considerations:

Just as an arbitrary function can be developed in terms of harmonic

functions so the general solution of Laplace's equation can be - and,

in general, will be - developed in terms of spherical surface harmonics,

elllpsoidal surface harmonics, and so forth. Such functions merit the

term harmonics since they do indeed undulate over their respective sur-

faces of definition, that is, sphere, ellipsoid, and so forth.

A harmonic function which is homogeneous 18 in xyz of integral 19

degree n is termed a spherical solid harmonic of degree n. By virtue
of its homogeneity

V(xyz) = V(r sin e cos _, r sin 8 sin _, r cos e)

= rnV(sin e cos _, sin 8 sin _, cos 8)

= rnSn(e¢)

Sn(8_) is termed a spherical surface harmonic of degree n.

Substituting into Laplace's equation

i i
sin e Be _ sin2e 8_2

it is found that Sn must satisfy the equation

82Sn 8Sn i 82Sn
-- + cot 8 + + n(n + I)S n = 0 (A2)
_e2 _ sin2e _2

17Responsibility for any inadequacies of notation or terminology

must be borne by Thomson and Tait, for it was in their "Treatise on

Natural Philosophy" that the current notation and terminology was first
introduced.

18A function f(xyz) is homogeneous of degree n in xyz if

f(px, py, pz) : pnf(xyz)

19Although n, in theory, can assume any value whatever, if n be

nonintegral, the solution exhibits singular behavior along the polar

axis. Such solutions must be precluded from potential theory since it

is a requirement that external to the gravitating masses the potential

must be everywhere well behaved.
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and, if such be the case, it is readily verified that r-n-iSn(8 _) also

satisfies Laplace's equation. The following theorems can be established:

Theorem I: If V(xyz) be a spherical solid harmonic of degree

V(xyz)
is a spherical solid harmonic of degree -(n + 1).

r2n+l

n, then

Theorem 2:

_P+q+r v

8xPSyqSz r

If V(xyz) be a spherical solid harmonic of degree n, then

is a spherical solid harmonic of degree n - p - q - r.

Theorem 3: The value of any finite single-valued function of position

on a sphere of unit radius can be expressed at every point at which the

function is continuous as a series of rational integral harmonics, pro-

vided the'function has only a finite number of lines and points of dis-

continuity and of maxima and minima on the surface.

Theorem 2 is almost self-evident if Laplace's equation is viewed

in its Cartesian form.

Now i/r defines the potential associated with unit mass at the

origin. As such it must satisfy Laplace's equation and indeed is a

spherical solid harmonic of degree -i. By theorem 2 8x\rj 8y\rJ

and _z are spherical solid harmonics of degree -2. Whence, by

virtue of the linearity of Laplace's equation,

(where 8/8h implies differentiation in a direction having direction

cosines _, m, and n) is also a spherical solid harmonic of degree -2.

This result is capable of immediate generalization; thus,

_n (r) is a spherical solid harmonic of degree _n _ i.
C)hl_h2 • . . _h n

Homogeneous solutions of Laplace's equation can themselves assume

r + z. _ r + za multivariety of form. Thus tan -1 ; l°ge r - z' tan-1 r l°ge r - z

are homogeneous solutions of degree zero. An especially important sub-

class of homogeneous solutions are the so-called rational integral har-

monics. These are homogeneous solutions of Laplace's equation which
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are also rational integral (or polynomial functions).

geneous rational integral function of degree n

a n Oxn- 2y2 +0,0 x + al, 0xn-ly + a2,

+ a0,1xn-lz + al, lXn-2yz +

+ a0,2xn-2z 2 +

The general homo-

takes the form

+ 0 ynan,

+ an_l, lyn- iz

+ an- 2, 2yn- 2z2

+ a0nzn

The total number of terms is i + 2 + 3 + . + (n + i) = l(n + l)(n + 2).

If this function is substituted into Laplace's equation, the fol-

lowing equation is obtained:

b xn-2 -3y +
O, 0 + bl, 0xn

+ b0,1 xn-3z +

+ bn_2, 0yn-2

• + bn_3,1yn-3z
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2zn- 2+ b0, n_ = 0

Since the terms appearing on the left-hand side are linearly inde-

pendent if the equation is to be satisfied, the individual coefficients

(of which there are _i n(n - i)) must be zero. This condition places
% l

2 n(n - i) requirements on our original _(n + l)(n + 2) coefficients

from which it follows that there are 2n + i linearly independent

rational integral harmonics of degree n.

These rational integral harmonics owe their importance to theorem 3.

Thus, consider the general Dirichlet problem of spherical harmonics.

After having specified a function f(e_) over the surface of unit sphere

to obtain a solution to Laplace's equation which converges to the func-

tion f(8_) as the unit sphere is approached.
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By theorem 3, f(xyz) = aoSo(8 _) + alSl(8 _) + a2S2(8 _) +

where SO, SI_ $2, and so forth are rational integral harmonics of

degrees O, i, 2, and so forth, then the solution desired can be written

down immediately

aoSo(e_) alSl(e_) a2S2(e_)
+ + +

r r2 r 3

By theorem 2, to each rational integral harmonic of degree n

there is a rational integral harmonic of degree -(n + i). It follows,

therefore, that there are 2n + I rational integral harmonics of

degree -(n + i). Specifically setting n = 0 there is only one inde-

pendent rational integral harmonic of degree -i, that is, I/r. By

successive differentiation of i/r in all possible directions the

entire system of rational integral harmonic functions can be developed.

Field of a Single Mass Point

The potential associated with a unit mass at M

will now be considered.

(see sketch 44)

M(f, g,h)

a I

[/ I /

P(x, y,z)

f

Sketch 44
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The potential at P, due to unit mass at M_ is given by

i i

vp - _ - 1/2 (A3)
(,

Expansion in a Taylor series in the coordinates f, g_ and h yields

i
Vp- r f _x + g_y + h _z T +

(_)n _
(A4)

which is valid everywhere external to the sphere embracing the mathemat-

2O
ical singularity (point mass), that is, r > a.

The terms of the Taylor series can be rewritten thus
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(f -_ +g_x -_ +hSy _0(i)= a _h(I)

( _ _ + h -_n(lh = an _n (I_f _x + g _U _zJ \r/ _h n\r/

Thus the Taylor series becomes

VP - i _ (r) (-)nan _n (i_r a _ + . + + (AS)
L _h n \rl

In this form the series is amenable to physical interpretation. Thus

i/r defines the potential associated with a point source at the origin;

defines the potential associated with a dipole at the origin with

its axis in the direction 0M; _2 #_h defines the potential associated

_h 2 \r/

with a quadripole at the origin with its axis in the direction OM; and

SO on.

20Note the similarity with the situation in the complex plane where

the expansion of a function in terms of inverse powers of z is valid

everywhere external to the circle embracing the singularities of the

function in question.
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Alternative series developments for the potential can be obtained as

follows:
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i
Vp=

MP

i

(r2 + a2 - 2ar cos e)I/2

l +a: T Z PI(_) + • an 1• + _-_ Pn(_) +

Vp = _ + -a " rn t• + _-_ Pn(_) +

(r > a)

(r < a)

(A6)

(A7)

where

= COS e

PI(_) =

P2(_):i(3_-l)

P3(_):½(5_3- 3_)

These relations are collectively referred to as "Legendre functions of

the first kind." Series (A4) and (A6) are entirely equivalent. One is

permitted therefore to equate corresponding terms

an Pn (_) = (_)nan _n (i_] (AS)

rn+l In _h n \r/

From theorem 2 it is known that the right-hand side of equation (AS)

defines a spherical harmonic function of degree -n - i; thus, Pn(_)

is a spherical surface harmonic. As such, it satisfies equation (A2)

or rather the equation derivable from equation (A2) when the lack of

dependence of Pn on the coordinate _ is considered

I 2\ dPn]d i + n(n + I)P n = 0d-_ - _J_-_J
(A9)

B
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This is a second-order differential equation and, as such, it possesses

a solution which is linearly independent of Pn(_). However, this addi-

tional solution exhibits singular behavior along the polar axis and, as

such, can play no role in potential theory.

From equation (A8) it is seen that PO, PI, P2, define

the spatial distribution of potential associated with a source, dipole,

quadripole, and so forth. Indeed, by using equation (A8) the geometric

form of the singularities in question can be readily established. The

results are presented for the first four singularities in table IV.

Consider the singularity associated with P3(_). It has no net

magnitude, the positives canceling the negatives (in a sense it might

be said to have no zeroeth moment). The first and second moments are

identically zero. The fourth and higher moments all tend to zero in

the limit by virtue of the fact that a _0 and m _ such that ma3

is finite. In other words, P3(_) contributes only to the third moment

and in general Pn(_) contributes only to the nth moment.
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Gravitational Field of Axisymmetric Mass Distribution

The gravitational field of an axisymmetric mass distribution can

be regarded as made up of uniform rings having their axes coinciding

with the axis of symmetry. Consider one such ring (sketch 45). The

Sketch 45

potential associated with the particle at P can be represented, exter-

nal to a sphere embracing the entire mass distribution, by a source at 0

plus a dipole, quadripole, and so forth at 0, all with their axes alined

with 0P. To eachparticle of the ring There corresponds an equivalent

singularity distribution. Consider for the moment the dipoles. They are
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of uniform strength; however, their axes are distributed over the coni-

cal surface at 0. Such a distribution is clearly equivalent to a

dipole alined with the axis of symmetry. By the same token the conical

distribution of quadripoles can be replaced by a single quadripole along

the axis of symmetry. Thus the potential associated with an axisymme-

tric mass distribution can be represented by singularities located at

the origin and having their axes coincident with the axis of symmetry.

In other words, an axisymmetric mass distribution can be expanded as a

series in P0(_) , PI(_), P2(_) , . where P0 is a measure of

total mass, P1 is a measure of the first moment of the mass distribu-

tion, P2 is a measure of the second moment of the mass distribution,

and so on. Now these successive moments are entirely separate and

unrelated characteristics of the mass distribution. (This fact is

reflected in their having different dimensions.) Thus P0, PI,

P2, . are entirely unrelated. In mathematical parlance therefore

P0, PI' P2, are said to be mutually orthogonal

fPmPn dw = 0 (m / n) (AIO)

It can be shown that, if an arbitrary axisymmetric function be

defined over the unit sphere and this function be approximated by a

series of Legendre functions, then by virtue of equation (AI0) a least-

square fit to the function in question will be obtained in which equal

weight is ascribed to all points of the spherical surface. This prop-

erty can be used as a means of defining the Legendre functions. (See

ref. 26.) Its significance in gravimetric work in which observations

are made at a number of discrete points and the least-square fit applied

to the data is obvious.

Discussion of Two-Dimensional Case

Before proceeding to a discussion of the case of a nonaxlsymmetric

mass distribution, it is instructive at this Juncture to discuss the

two-dimensional case. It is shown that in a very real sense the theory

of spherical harmonics is an immediate generalization of Fourier's har-

monic analysis in two dimensions.

_place's equation in polar coordinates in two dimensions takes the
_rm

i a(r v) i a2v 0
Tr + r2 3e2 =

B
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If homogeneous solutions of degree n (V : rnSn(e)) are sought,

then Sn satisfies the equation 21

d2Sn + n2Sn 0 (A.12)
de 2

Thus

Sn = cos ne

or

Sn = sin ne

These functions are the rational integral solutions in two dimensions.

Fourier's theorem can be formulated in strict conformity with theorem 3,

thusly_ the value of any function of position on the circumference of a

circle can be expressed at every point of the circumference at which the

function is continuous in terms of rational integral function (circular

functions of multiple angles) provided the function is single valued

and has only a finite number of discontinuities and of maxima and minima

on the circumference of the circle. (See sketch 46.)

Symmetrical
function
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Sketch 46

21
To ensure periodicity with respect to e, n must be integral.
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If a requirement of symmetry with respect to a diameter is imposed_

an otherwise arbitrary function can be expanded as a cosine series

f(e) = a0 + aI cos e + a2 cos 2e + a3 cos 3e + (_L3)

where I, cos e, cos 2e, cos 3e, are strictly analogous to

P0' P1, P2, P3' .... Just as the geometric form of the singular-

ities associated with the Legendre functions could be established, those

associated with circular functions can be determined. The results are

presented in table V.

It is possibl% if desired, to develop the theory of circular and

elliptic harmonics, and so forth, strictly analogously to the theory of

spherical and ellipsoidal harmonics, and so forth. In practice, how-

ever, this is not done because in two dimensions there is a much more

powerful tool for the solution of potential problems in the guise of

the theory of analytic functions.

General Nonsymmetric Case

In this instance a general solution of the equation

82Sn + cot e 8Sn 1 82Sn n(n 1)S n 0 (A14)

_e2 _-+ + + =sin2e _2

is required. Separating variables and setting Sn(e_) = 8(8)@(_) yields

¢ d2¢ - c (A15)

d_ 2

sin2e8 d 8+ cot e de + n(n + i) = -c

To ensure periodicity with respect to the coordinate

stant e appearing in equation (A15) must be of the form

p is integral. Hence equation (A16) assumes the form

[dC C_.I+ (n+ i) i e
=0

(AZ6)

_, the con-

c = _p2 where

(AI7)
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Moreover, since it is required that 8 be a periodic function of

ej this demands that p _ n. Thus, the permissible solutions of degree

n are Pn (0), Pn(1)cos _, Pn(1)sin _, P(2)cos 2_, Pn(2)sin 2_,

• Pn(n)eos n¢, Pn(n)sin me. These constitute 2n + i linearly

independent rational integral harmonic functions which by the manner of

their derivation are mutually orthogonal and Pn(O), Pn(1), Pn (n)

are termed associated Legendre functions of the first kind.

What is the nature of the singularities associated with these

generalized harmonic functions? The composite form of the functions

Pn(k)cos k¢ suggest that the singularities are synthesized out of the

axial singularities of table IV and the star-shaped singularities of

table V. This indeed proves to be the case; thus, Pn(k)cos k_ is

obtained by differentiating the star-shaped singularity associated with

cos k¢ n - k times in the Z-direction. A representation of the sin-

gularity associated with P43cos 3¢ is given in sketch 47.

Nature of singularity associated with P43cos 3_
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I m-l-

ma 4 is finite

Sketch 47

The functions Pn (0) are the so-called zonal harmonics discussed

previously; they alternate in sign, the zero lines subdividing the sphere

into equal zonal segments. (See (a) part of sketch 48.) The functions

Pn(n)cos n_ and Pn(n)sin n_ are termed sectorial harmonics; the zero

lines in this case divide the sphere up into equal sectors. (See
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(b) part of sketch 48.) The intervening harmonics are called tesseral

harmonics by virtue of their dividing the sphere into equal tesserae.

(See (c) part of sketch 48.)

a. be

C.

Sketch 48

If a function, defined on the surface of unit sphere, be approxi-

mated by a series of harmonic functions, by virtue of the orthogonality

of the latter, the series will provide a least-square fit in which equal

weights are given to all points of the spherical surface. In this

respect the harmonic functions are singularly appropriate for series

representation of a function, the value of which has been measured at

a finite number of distinct points.

Generalization of Concepts

Let us suppose a function f is defined along the line segment

between -1 and 1. Imagine a unit sphere to be centered on the point 0

and the function f to be projected radially outwards onto the surface

of the sphere. Thus, the value of f at distance x is assigned to

all points along the parallel of latitude of this distance from the

equatorial plane. The function thus defined over the surface of unit

sphere can be represented by a series of zonal harmonics. Since this
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series attaches equal weight to equal zonal segments of the sphere and
since equal zonal segments correspond to equal segments of the linear
interval -i to i, it follows that the expansion in terms of Legendre
functions will uniformly approximate the function over the entire
interval.

If, on the other hand3 the unit circle was centered on 0 and the
function f projected onto the circumference of the circle in a manner
strictly analogous to that described above, the function defined on the
circle could be expandedas a cosine series. In this case, however, the
expansion gives equal weights to equal arc lengths; however, equal arc
lengths no longer correspond to equal lengths of the diameter and the
expansion of f between -i and i in terms of circular functions gives
greater weight to the extremities of the interval than to the center.

The circular functions and the Legendre functions could have been
obtained by seeking sets of functions which are orthogonal and which
provide uniform least-square fit to functions which are defined on the
circle and sphere, respectively. This would provide immediately a
method of generalizing to higher dimensions. Orthogonal polynomials
to provide uniform fit to functions defined over the surfaces of hyper-
spheres of four and higher dimensions are sought. In this way the
Gegenbauerpolynomials can be obtained. Such polynomials can, of
course3 be used to approximate a function over the interval -i to i.
These approximations will, if so applied_ have associated with them
certain characteristic weighting functions.

L
i
9

7

9
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TABLE I .- DIMENSIONS OF THE EARTH ELLIPSOID

FROM ARC MEASUREMENTS

ETaken from ref. i (p. 230)_

Author: Year rq i/e

Bouguer, Maupertuis ......... : 1738 6,597, 300 216.8

Delambre ............... 1800 6, 375,653 354.0

Walbeck ................ 1819 6, 576,896 502.8

Everest ................ 1830 6,577, 276 500.8

Airy ................. 1830 6, 376,542 299.3

Bessel ................ 1841 6, 577, 597 299.15

Clarke ................ 1857 6, 578, 545 294.26

Pratt ................. 1863 6, 378, 245 295.3

Clarke ................ 1866 6, 378, 206 295.0

Clarke ................ 1880 6, 578,249 295.5

Bonsdorff, A .............. 1888 6, 378, 444 298.6

Hayford ................ 1906 6, 378, 285 297.8

Helmert ................ 1907 6, 378,200 298.6

Hayford ................ 1910 6, 378, 588 297.0

Hei skanen ............. 1926 6,578, 397 (279. O)

Krassowski .............. 1958 6,378,245 298.3

Jeffreys ............... 1948 6,378,099 297. i

Ledersteger .............. 1951 6,578,298 (297. O)

U.S. Army Map Service (Hough) ..... 1956 6,578,260 (297.0)
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TABLE IV.- FORM OF SINGULARITIES USED IN

SPHERICAL HARMONIC ANALYSIS

Legendre
function

Po(_)

PI(_)

P2(_)

Radial fall

off in

intensity

1

r

1

r2

1

r3

1

r4

Geometric form

of singularity

+

___a
Sa

+Ta

(---_ a

+÷+---

o_a

a -_ 0 and

m -_ oo

so that -

ma finite

ma 2 finite

m 3 finite

L

1

9

7

9
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TABLE V.- FORM OF SINGULARITIES USED IN

FOURIER ANALYSIS

Cosine circular

functions

Radial fall off

in intensity

cos e

cos 2e

cos 3e

Geometric form

of singularity

i log e +

1

r

1

r2

m
+

m

+

m+

J

a -_0 and

m-_

so that -

ma 2 finite

ma 2 finite

1

r3

ma 5 finite

NASA-Langley, 1962 L- 1979
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